

dr. Paolo Dal Pian

geologo

Relazione geologica geotecnica relativa al progetto di sopraelevazione dell'edificio municipale di Sasso Marconi (BO).

Località:

piazza Martiri della Libertà, 6 in Comune di Sasso Marconi (BO).

Il committente:

Comune di Sasso Marconi (BO).

Sasso Marconi (BO), 29/05/2009

tel. e fax: 051/6752115 cell.: 347/6836979

e mail: geol.dalpian@tin.it

PREMESSA

La presente relazione è stata condotta su incarico del Comune di Sasso Marconi (BO), allo scopo di definire i caratteri geologici e geotecnici dei terreni di fondazione dell'edificio municipale relativamente al progetto di sopraelevazione di quest'ultimo.

Da un'analisi preliminare il fabbricato appare classificabile:

Tipo di costruzione: 3Vita nominale dell'opera V_N ≥ 100anni

Classe d'uso dell'edificio: IV – Funzioni pubbliche e strategiche importanti anche con riferimento alla gestione della protezione civile in caso di calamità.

Coefficiente d'uso Cu = 2.0

Pertanto è indispensabile adottare le Norme Tecniche per le Costruzioni – D.M. 14/01/2008. Il Municipio è sito in piazza Martiri della Libertà, 6 in Comune di Sasso Marconi (BO), vedi fig.1-2.

INQUADRAMENTO GEOLOGICO- GEOMORFOLOGICO

Con riferimento alle fig.1-2-3-4, la proprietà è posta alla quota di 129.4÷132.4m s.l.m., nell'area urbana di Sasso Marconi.

Morfologicamente l'abitato si localizza nel fondovalle del fiume Reno, in sinistra idrografica, su un ampio terrazzamento di origine fluviale, debolmente inclinato (β_{medio} = 1.9°) verso l'asse del fiume

La presenza di tre scarpate di terrazzo definisce 4 ordini di terrazzo all'interno del fondovalle; il Municipio si ubica su quello più occidentale, cioè quello più esterno, quindi più antico.

La sommità scarpata di terrazzo prossima al Municipio si localizza a circa 20m ad Est e risulta morfologicamente poco riconoscibile a causa degli interventi antropici di urbanizzazione (muro di sostegno al margine dell'area sportiva-ricreativa della Parrocchia).

depositi alluvionali terrazzati in oggetto sono ascrivibili alla Successione neogenico - quaternaria del margine appenninico padano; in specifico a AES8 - Subsintema di Ravenna del Pleistocene sup. - Olocene (14 ka - attuale; datazione 14C).

Nei settori intravallivi: ghiaie passanti a sabbie e limi organizzate in numerosi ordini di terrazzi alluvionali.

Negli sbocchi vallivi e nella piana alluvionale ghiaie, sabbie, limi ed argille.

Il limite superiore contraddistinto da suoli contenenti frequenti reperti archeologici di età del Bronzo, del Ferro e Romana. Il limite inferiore è erosivo sui depositi marini ed alluvionali sottostanti.

La stratigrafia del terrazzo alluvionale in corrispondenza del Municipio è desumibile dalle sezioni geotecniche litostratigrafiche di fig.6-7, derivate dalle indagini geognostiche in sito condotte.

Facendo riferimento alla quota del piano terra del Municipio, la base del terrazzo alluvionale è posta a quota -14.5m.

Si rinviene uno spessore alquanto variabile di terreni di riporto costituiti da pavimentazioni passanti a sabbie limose, sabbie argilloso limose, da sciolti a mediamente addensati, con macerie. Se nel caso della CPT3 è stato possibile accertarne la presenza dall'osservazione delle carote del sondaggio S.3, in CPT1 si è ricorso all'analisi dei dati penetrometrici relativamente ai bassi valori di fs e talora di qc che in genere contraddistinguono i riporti. In corrispondenza della penetrometria CPT3 il riporto raggiunge la profondità di -3.4m, mentre in CPT1 sembra di -5m. In entrambi i casi la base del riporto risulta essere sottoposta alla quota del piano di fondazione del Municipio riportata negli elaborati/calcoli e nelle tavole del progetto consultato. Peraltro, considerando che il Municipio non denota lesioni riconducibili a

cedimento dei terreni di fondazione, si possono fare le seguenti ipotesi in merito alla presenza di riporto ad una quota inferiore al piano di fondazione:

A. il piano di fondazione è stato effettivamente realizzato ad una quota inferiore a quanto viene definito nelle tavole di progetto;

B. il terreno di riporto si estende al di sotto della quota del piano di fondazione solo esternamente al sedime del Municipio, mentre le fondazioni insistono sul terreno in posto.

Non si esclude che i movimenti terra e le ricostruzioni riconducibili agli eventi bellici (bombardamenti e relativi profondi crateri) della ll^a guerra mondiale possano essere causa del notevole spessore dei riporti.

Il terreno in posto riferibile al deposito alluvionale terrazzato è rappresentato da limi argilloso sabbiosi, sabbie argilloso limose, sabbie limose, mediamente addensate. Sono sedimenti riferibili ad ambiente di media energia, cioè ad un modello fluviale braided (a canali intrecciati) a barre trasversali.

È possibile che i depositi di origine fluviale possano essere interdigitati con depositi di detrito di falda o conoide di detrito derivanti dall'erosione dei rilievi collinari posti ad Ovest dell'abitato/terrazzo alluvionale in oggetto.

La base del terrazzo è contraddistinta da un deposito grossolano di 2.6m di spessore: trattasi di ghiaie debolmente ciottolose, ben assortite, arrotondate, da mediamente addensate a molto addensate, in matrice sabbiosa, di colore bruno chiaro, passanti a ciottoli con ghiaia, arrotondati, in matrice sabbiosa, molto addensati.

Sono depositi che rendono conto di elevata energia della corrente fluviale, riconducibile ad ambiente di fondo di canale ed in subordine di barra longitudinale.

Il substrato del terrazzo alluvionale è rappresentato da ADO1 - Formazione di Monte Adone - Membro di Monte Mario del Pliocene medio e sup. - Pleistocene inf.?

La Carta geologica dell'Appennino Emiliano-Romagnolo della Regione Emilia-Romagna (SEZIONE 237030 – SASSO MARCONI Edizione 2007 e SEZIONE 237040 – BADOLO Edizione 2007) descrive ADO1 - Formazione di Monte Adone - Membro di Monte Mario: areniti e subordinati conglomerati in strati da medi a molto spessi con stratificazione tabulare, obliqua a grande scala e localmente cuneiforme. La potenza varia da poche decine di metri a circa 350m.

La giacitura della formazione è 45°/NO/6°.

La giacitura di ADO1 si dispone a reggipoggio, cioè in un assetto favorevole alla stabilità di versante dei rilievi posti ad Ovest dell'abitato.

Nessuna faglia od altra dislocazione interessa il sito in esame.

Il sondaggio a carotaggio continuo S.3 realizzato presso il Municipio ha evidenziato al di sotto di 12.60m di profondità la presenza di sabbie limose, talora limi sabbiosi, molto addensati, di colore grigio chiaro, dotati di umidità naturale. Sono presenti rari cogoli, ⊘2÷3cm. arenacei a grana media, debolmente cementati, di colore bruno grigiastro.

Inoltre rari livelli di:

- sabbie medie, ben cernite, molto addensate, di colore bruno;
- sabbie medio-fini limose, muscovitiche, molto addensate, di colore grigio con screziature nerastre.

La presenza di rari cogoli all'interno delle carote di perforazione e l'elevato addensamento del deposito (sovraconsolidazione) consente di attribuirlo al substrato e non al terrazzo alluvionale.

Le differenze litologiche tra quanto riportato dalla Carta geologica della RER e le evidenze oggettive del sondaggio S.3 riguardano il grado di cementazione del substrato: nel caso del sondaggio S.3 le sabbie risultano molto addensate, ma non cementate. Tale difformità rispetto alla Carta geologica della RER non stupisce particolarmente, considerando che, se il substrato fosse stato cementato, si sarebbe preservato dall'erosione fluviale, parimenti a quanto è avvenuto, per esempio, nel caso della Rupe di Sasso Marconi, contraddistinta da media-elevata competenza (cementazione).

Si sottolinea che le risultanze della prova geofisica MASW indicano che il substrato non denota un sensibile aumento della velocità delle onde s (Vs) con la profondità, evidenza che lascia presumere che ADO1 - Formazione di Monte Adone - Membro di Monte Mario non risulti cementata almeno fino a 30÷40m di profondità.

La Formazione di Monterumici - membro di Cà di Mazza - RUM2 del Pliocene inf. è stratigraficamente sottoposta al substrato (ADO1) del terrazzo alluvionale su cui insiste il Municipio.

RUM2 è caratterizzato da argille, spesso sabbiose, sabbie e arenarie in strati da sottili a molto spessi, di colore grigio, giallastre se alterate. Sono presenti livelli a macrofossili (Gasteropodi e Lamellibranchi) addensati ed intercalazioni di ghiaie e conglomerati in strati spessi e molto spessi, a geometria tabulare e lenticolare. Nelle peliti possono localmente essere presenti livelli di gesso selenitico. Potenza fino a 300m.

I rilievi collinari posti 300m a Nordovest, a Nord di via Castello, sono rappresentati da ADO2 - Formazione di Monte Adone - membro delle Ganzole del Pliocene medio e sup. - Pleistocene inf.?

Si tratta una formazione coeva ad ADO1, probabilmente in eteropia di facies, costituita da areniti fini e subordinate peliti sabbiose, bioturbate, in strati da medi a molto spessi; la geometria è tabulare, cuneiforme e concava. Talora presenti livelli di peliti grigio scure. I macrofossili sono concentrati in letti. La potenza massima è di circa 650m.

170m ad Ovest del Municipio, presso il piede del versante si rinviene una stretta fascia interpretabile come detrito di falda o a3 - Deposito di versante s.l.; è costituito da litotipi eterogenei ed eterometrici più o meno caotici. La genesi può essere dubitativamente gravitativa, da ruscellamento superficiale e/o da soliflusso.

250m a Nordest del Municipio, in corrispondenza di via Castello si rinviene la conoide torrentizia inattiva - i2 sedimentata dal Rio Eva. Trattasi di depositi alluvionali, prevalentemente ghiaiosi, in corrispondenza dello sbocco di valli e vallecole trasversali ai corsi d'acqua, attualmente non soggetti ad evoluzione.

Nella zona in esame e nel territorio circostante non si apprezzano indizi o evidenze di evoluzione morfodinamica attiva che possa interferire con l'opera in progetto.

INQUADRAMENTO IDROGRAFICO

La rete idrografica naturale principale è costituita dal fiume Reno posto 500m a Sudest; l'alveo si localizza alla quota di 93m s.l.m., cioè 36m al di sotto del piano seminterrato del Municipio.

In corrispondenza del piede del rilievo posto ad Ovest, il versante è intersecato ortogonalmente dall'alveo canalizzato del rio Eva. Lungo via Castello il rio Eva è stato regimato artificialmente per fare posto alla sede stradale di via Castello; l'alveo è stato spostato in destra idrografica, addossandolo al piede del ripido versante. Inoltre sono state realizzate arginature artificiali (in terra) in modo da renderlo talvolta pensile rispetto a via Castello. In prossimità dell'abitato il rio entra in una angusto cunicolo/galleria, per poi deviare bruscamente in direzione Sud e riemergere a cielo aperto un centinaio di metri a valle. Da qui risulta canalizzato mediante un manufatto a sezione trapezoidale in calcestruzzo? che procede parallelamente al piede del versante, immettendosi poi nel rio Gemese.

Il rio Eva è un fosso demaniale, il cui alveo canalizzato dimostra profondità di circa 1,2m e larghezza di 1m. Risulta privo di portata per gran parte dell'anno e solo in occasione delle precipitazioni si attiva il flusso idrico.

ıza

nto

olo in

ellici del

oso enti

trito vest

ttasi nolto liaia,

e ad

one -

agna OLO reniti oliqua circa

lità di

sotto ati, di acei a

ziature

nto del errazzo

idenze aso del formità ie, se il nenti a inta da

Prima che l'alveo fosse canalizzato nel corso degli anni '60, risulta che il rio Eva abbia tracimato a monte del tratto in galleria; il flusso d'acqua ha tra l'altro demolito un tratto di circa 12m di un muro di sostegno nella proprietà di via Castello, 37/1-2. Successivamente si è provveduto al ripristino del muro mediante un'idonea struttura in c.a., dato che il muro preesistente risultava costituito da elementi cementizi prefabbricati privi di armatura interna. Da una ricerca di archivio condotta presso l'Ufficio Tecnico del Comune di Sasso Marconi risulta che in consistenti presidenti president

risulta che in occasione di consistenti precipitazioni occorse nel 1994, il rio Eva ha tracimato dal suo alveo (canalizzato) in corrispondenza del tratto posto a Sud di via Castello, cioè in prossimità del n.c. 37/1-2 di via Castello.

È presumibile che la mancata manutenzione dell'alveo canalizzato (pulizia dei detriti e della vegetazione) sia una delle cause responsabili del dissesto.

Non si determinò alcuna interazione tra l'esondazione suddetta e l'edificio municipale.

La rete scolante circostante il Municipio è controllata dalle opere idrauliche realizzate per l'urbanizzazione (strade e fognature).

Non sono stati reperite informazioni circa eventuali remoti alluvionamenti del Municipio.

INQUADRAMENTO IDROGEOLOGICO

Il quadro idrogeologico è stato definito mediante l'installazione di n.3 piezometri (Ø25mm) a tubo aperto, completamente fessurati, in corrispondenza delle penetrometrie condotte. Il sondaggio S.3 è stato attrezzato con un piezometro (Ø40mm) a tubo aperto, fessurato e rivestito di tessuto non tessuto da 4.55m di profondità. I piezometri sono stati ubicati in fig.5. Inoltre è stato monitorato il pozzo ubicato presso la "Farmacia dei sani", ad Ovest del Municipio, vedi fig.2-5.

Le seguenti tabelle e grafico riassumono i risultati della campagna di monitoraggio piezometrico.

					Soggiacenza dal piano campagna in metri												
Rif.	Quota p.c. da 0.00 m	Profondità indagata da p.c. m	Profondità piezometro da p.c. m	1 5	12/09/2008	18/09/2008	22/09/2008	01/10/2008	16/10/2008	30/10/2008	03/11/2008	05/11/2008	11/11/2008	14/11/2008	18/11/2008	12/01/2009	16/04/2009
CPT1	0.00	12,00	11,70	11,70	11,70	assente	assente	assente	11,70	n.r.	n.r.	11,70	11,70	11,63	11,64	11,70	11,65
CPT2	-0,20	12,00	8,65	assente	assente	assente	assente	assente	assente	n.r.	n.r.	n.r.	assente	assente	assente	assente	assente
CPT3	-1,20	11,60	9,06	assente	assente	assente	assente	9,00	8,81	8,95	8,96	8,98	8,99	9,02	9,03	9,02	9,00
S.3	-1,20	15,00	12,25	n.r.	n.r.	11,55	11,58	11,60	11,51	11,40	11,35	11,37	11,42	11,42	11,43	11,40	11,37
P	70,50?	-	?14,38?	n.r.	mir.	12,50	n.r.	12,51	12,42	12,31	12,27	12,26	12,34	12,37	12,37	12,48	12,43

					Soggiacenza in metri da 0.00 = piano terra Municipio												
Rif.	Quota p.c. da 0.00 m	Profondità indagata da p.c. m	Profondità piezometro da 0,00 m	1 8	12/09/2008	18/09/2008	22/09/2008	01/10/2008	16/10/2008	30/10/2008	03/11/2008	05/11/2008	11/11/2008	14/11/2008	18/11/2008	12/01/2009	16/04/2009
CPT1	0.00	12,00	11,70	11,70	11,70	assente	assente	assente	11,70	n.r.	n.r.	11,70	11,70	11,63	11,64	11,70	11,65
CPT2	-0,20	12,00	8,85	assente	assente	assente	assente	assente	assente	n.r.	n.r.	n.r.	assente	assente	assente	assente	assente
СРТ3	-1,20	11,60	10,26	assente	assente	assente	assente	10,20	10,01	10,15	10,16	10,18	10,19	10,22	10,23	10,22	10,20
S.3	-1,20	15,00	13,45	n.r.	n.r.	12,75	12,78	12,80	12,71	12,60	12,55	12,57	12,62	12,62	12,63	12,60	12,57
Р	20,502	-	?13,88?	n.r.	п.г.	12,00	n.r.	12,01	11,92	11,81	11,77	11,76	11,84	11,87	11,87	11,98	11,93

Si faccia inoltre riferimento alle sezioni geotecniche litostratigrafiche di fig.6-7 nelle quali è tra l'altro riportata la minima soggiacenza rilevata nel periodo monitorato 11/09/2008 ÷ 16/04/2009.

La stagione estiva del 2008, che ha immediatamente preceduto il periodo di monitoraggio piezometrico, è stata contraddistinta da scarsissime precipitazioni e da temperature elevate. Hanno fatto seguito un autunno 2008 ed un inverno 2008/09 estremamente piovosi, comprendenti anche tre nevicate.

Questo andamento climatico lascia supporre che il massimo innalzamento della falda rilevato nel periodo monitorato possa essere prossimo alla minima soggiacenza assoluta.

Nonostante gli estremi climatici suddetti, l'escursione piezometrica è risultata molto limitata. Solo nel caso di S.3 e P si rileva un debole innalzamento dei livelli piezometrici con l'avanzare dell'autunno 2008, mentre negli altri piezometri i livelli permangono pressoché stabili.

Questa differenza è probabilmente imputabile al fatto che i piezometri S.3 e P penetrano ampiamente all'interno del deposito acquifero di ghiaie, debolmente ciottolose, in matrice sabbiosa, sature, poste alla base del deposito alluvionale terrazzato entro il quale è ospitata la falda freatica.

Al contrario il piezometro CPT1 lambisce il tetto delle ghiaie e la falda, mentre quelli di CPT2-3 si attestano ben al disopra del deposito ghiaioso saturo.

Non è stato possibile spingere più in profondità i piezometri CPT1-2-3 a causa del franamento del foro penetrometrico.

Il piezometro CPT2 è rimasto asciutto per tutto il periodo, mentre CPT3 ha palesato presenza d'acqua solo con l'inizio delle precipitazioni di ottobre 2008; si tratta di una modesta falda temporanea della quale non è nota la profondità. Non si esclude che possa trattarsi di un livello acquifero saturo all'interno del terreno di riporto; da qui l'acqua percola entro il piezometro fino ad attestarsi in prossimità del fondo del piezometro stesso.

Il substrato è costituito da sabbie limose, limi sabbiosi, molto addensati, semilapidei, apparentemente dotati di umidità naturale. Le difficoltà di carotaggio del substrato semilapideo, indotte dall'elevato addensamento, ha fatto si che il calore prodotto dalla prolungata rotazione del carotiere abbia diminuito il contenuto d'acqua del terreno. Pertanto risulta impossibile asserire con certezza che il substrato sia saturo, anche se si stima che sia improbabile.

Nonostante non si possa redigere una carta piezometrica a causa dell'incertezza della quota del boccaforo del pozzo P della "Farmacia dei sani", appare evidente che la direzione di deflusso della falda è orientata in direzione Sud o forse Sudest.

Questo dato appare in contrasto con la Tav.1 Carta idrogeologica del Quadro Conoscitivo QCGI.2 del Piano Strutturale Comunale del Comune di Sasso Marconi, vedi fig. 4bis in allegato, la quale rende conto di un deflusso in direzione Est. Inoltre la carta idrogeologica riporta per il Municipio una soggiacenza di -5.4m, quando quella misurata in CPT1 risulta di circa -11.65m.

Le difformità non stupiscono dato che la carta idrogeologica del PSC è carente di rilevamenti di pozzi freatici per questa zona specifica.

La direzione di deflusso rilevata dallo scrivente potrebbe essere controllata dall'assetto della giacitura o dalla maggiore permeabilità dei depositi ghiaioso ciottolosi che si rinvengono nell'area Sud del sito indagato.

La zona di alimentazione della falda del terrazzo alluvionale comprende i territori collinari, incolti e boscati posti ad Ovest, dove le acque meteoriche hanno modo di infiltrarsi nel sottosuolo permeabile, dato che non sono impedite dalle pavimentazioni che caratterizzano buona parte dell'area urbanizzata di Sasso Marconi.

Il piano seminterrato dell'edificio municipale si localizza a quote diversificate: $-2.52 \div -3.00$ m.

mentre il massimo innalzamento della superficie piezometrica-freatica rilevato nel periodo di monitoraggio ha raggiunto la quota di -11.63m. Pertanto non sussiste interferenza tra falda freatica ed il piano seminterrato del Municipio.

Le venute d'acqua palesatesi in passato nel piano seminterrato derivavano da acque corrive che pervenivano in corrispondenza degli infissi del cavedio di aerazione della porzione perimetrale interrata del Municipio. Il problema è stato risolto da un adeguato intervento di specifica ristrutturazione/manutenzione.

CARATTERISTICHE GEOTECNICHE DEI TERRENI

Al fine di caratterizzare i terreni di fondazione dell'edificio municipale, sono state eseguite diverse indagini geognostiche in sito:

- prove penetrometriche statiche meccaniche CPT;
- sondaggio a carotaggio continuo con esecuzione di prove penetrometriche SPT in foro.

PROVE PENETROMETRICHE STATICHE MECCANICHE CPT

L'11/09/2008 la GEOSERVICE Indagini geognostiche di Bassi Fabio ha condotto n.3 prove penetrometriche statiche meccaniche (CPT1-2-3), ubicate in fig.5.

È stato utilizzato un penetrometro statico PAGANI TG63/200KN CPT (Cone Penetration Test) che ha permesso di quantificare la qc (resistenza specifica alla punta) e la fs. (resistenza specifica al manicotto).

Trattasi di un penetrometro statico olandese tipo GOUDA (tipo meccanico) le cui caratteristiche sono:

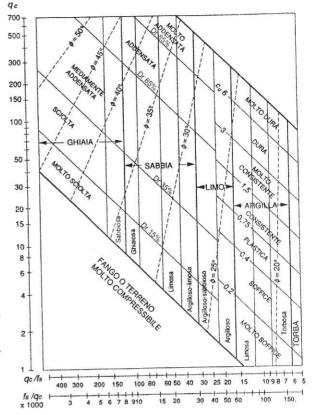
- punta conica meccanica Ø 35.7mm;
- angolo di apertura α = 60°;
- area punta Ap = 10cm²;
- manicotto laterale di attrito tipo "Begemann"
 (Ø 35.7mm h 133mm sup. lat. Am. = 150cm²);
- velocità di avanzamento costante V = 2cm/sec (± 0.5cm/sec);
- spinta max nominale dello strumento Smax variabile a seconda del tipo;
- costante di trasformazione (lett.⇒Spinta) Ct = spinta (kg)/lettura di campagna.

fase 1 - resistenza alla punta qc (kg/cm²) = (L. punta) Ct /10

fase 2 - resistenza laterale locale fs (kg/cm²) = [(L. laterale) - (L. punta)] Ct/150

fase 3 - resistenza totale Rt (kg) = (L. totale) Ct

qc / fs = rapporto di Begemann


- L. punta = lettura di campagna durante l' infissione della sola punta (fase 1)
- L. laterale = lettura di campagna relativa all'infissione di punta e manicotto (fase 2)
- L. totale = lettura di campagna relativa all'infissione delle aste esterne (fase 3)

N.B.: la spinta S (kg), corrispondente a ciascuna fase, si ottiene moltiplicando la corrispondente lettura di campagna L per la costante di trasformazione Ct.

N.B.: causa la distanza intercorrente (20cm circa) fra il manicotto laterale e la punta conica del penetrometro, la resistenza laterale locale fs viene computata 20cm sopra la punta.

È possibile identificare orientativamente sia il tipo litologico che la consistenza o l'addensamento del terreno, utilizzando il grafico di Searle:

Searle, I. W., 1979. The interpretation of Begemann friction jacket cone results to give soil types and design parameters. Proceedings of 7th European Conference on Soil Mechanics and Foundation Engineering, ECSMFE, Brighton, Vol. 2, pp. 265 – 270

l risultati penetrometrici sono riportati in tabelle, grafici e grafici comparativi posti in allegato. Si ricorda che i parametri geotecnici riportati nelle tabelle penetrometriche sono espressi in termini non drenati (Cu, ϕ), in quanto derivati da prove penetrometriche che sottopongono il terreno a rapida rottura senza consentirne il drenaggio.

Il terreno è stato suddiviso in strati di 20cm di spessore sulla base delle letture L1 ed L2, per i quali sono stati definiti i valori dei parametri geotecnici nominali (X_n) sulla base delle seguenti correlazioni.

Il peso di volume naturale γ_{nat} è stato elaborato secondo le seguenti correlazioni.

GRANULOMETRIA	CORRE	LAZIONI
argille limose limi argillosi	$\gamma_{\text{nat}} = 0.0001*\text{LNqc} + 0.001$	6 in kg/cm³ (AA.VV.)
limi argilloso sabbiosi sabbie argilloso limose sabbie limose sabbie sabbie ghiaiose	$\label{eq:gamma_nat} \begin{split} \text{se DR} &< 35\% \\ \gamma_{\text{nat}} &= \frac{0.0319*Dr + 14.775}{10000} \\ \text{in kg/cm}^3 \text{ (Crow, 2004)} \end{split}$	se DR>35% $\gamma_{\text{nat}} = \frac{0.03*Dr + 17}{10000}$ in kg/cm³ (Crow, 2004 e AA.VV.)
ghiaie sabbiose ghiaie	$\gamma_{\text{nat}} = \frac{0.0308 * Dr + 17.973}{10000}$	in kg/cm ³ (Crow, 2004)

Il peso di volume saturo γ_{sat} è stato elaborato secondo le seguenti correlazioni.

GRANULOMETRIA	CORRELAZIONI
argille limose limi argillosi	$\gamma_{sat} = \gamma_{nat} + 0.00008$ in kg/cm ³ (AA.VV.)
limi argilloso sabbiosi sabbie argilloso limose sabbie limose sabbie sabbie ghiaiose ghiaie sabbiose ghiaie	$\gamma_{\text{sat}} = \gamma_{\text{nat}} + 0.0003$ in kg/cm³ (AA.VV.)

- La coesione non drenata Cu è stata elaborata secondo il grafico di Searle
- L'angolo di attrito interno φ è stato elaborato secondo il grafico di Searle.
- La densità relativa Dr% è stata elaborata secondo il grafico di Searle.
- Il modulo edometrico E è stato elaborato secondo la relazione E = α qc; le tabelle ed i dati di Mitchell-Gardner, 1975 e di Sanglerat et al., 1972 identificano il valore di α in funzione del tipo granulometrico e del valore di qc:

	qc≤5kg/cm²	α=5
terreni coesivi – argille, argille organiche	qc=10kg/cm ²	α=4
terreni misti – argille sabbiose	qc=15kg/cm ²	α=3,3
	qc≥20kg/cm²	α=3
		W≤50% α=3
towari annivi annilla tambana	qc≤7kg/cm ²	W=100% α=1,5
terreni coesivi – argille torbose	qc/fs≤15	W=200% α=1
		W≥300% α=0,4
terreni incoerenti		α=3

I singoli strati di terreno di 20cm di spessore sono stati poi raggruppati in strati omogenei sulla base di consimili caratteristiche granulometriche, di addensamento o di consistenza, riferibili ai campi definiti dal grafico di Searle.

Da un prima elaborazione dei dati di campagna L1 ed L2 delle tre CPT, in base al rapporto di Begemann qc/fs, è emersa la presenza di strati coesivi riferibili ad argille limose e limi argillosi, da consistenti a molto consistenti, anche di spessore considerevole, in alternanza con depositi incoerenti sabbioso limosi.

Una volta realizzato il sondaggio a carotaggio continuo S.3, è stato possibile tarare la granulometria della CPT3 ed estrapolando anche le CPT1-2 sulla stima della reale litologia delle carote. I litotipi coesivi, supposti sulla base delle correlazioni innanzidette, non sono stati rinvenuti in S.3; al contrario sono stati rilevati depositi incoerenti sabbioso limosi.

Per ricondurre il valore di qc/fs alla reale granulometria si è adottato per fs (resistenza specifica al manicotto) un coefficiente riduttivo di pari a 0.8x.

Nel contempo NON sono stati modificati i valori di L1 = qc (resistenza specifica alla punta).

Si è cercato di distinguere, quando presenti, le fluttuazioni dei parametri nell'ambito di uno stesso campo di addensamento o consistenza, suddividendo lo strato per un ulteriore discrimine.

Ad ogni strato omogeneo sono stati attribuiti i parametri geotecnici caratteristici (X_k), concetto introdotto dall'Eurocodice 7: "Eurocode 7: Geotechnical design - Part 1: General rules".

Il valore caratteristico X_k , inteso come una stima cautelativa del parametro geotecnico che influenza l'insorgere dello stato limite in considerazione, dovrà essere utilizzato in qualsiasi tipo di verifica geotecnica, che si tratti di SLU (stati limite ultimi ovvero potenziale presenza di una superficie di rottura) o di SLE (stati limite di esercizio ossia deformazioni di tipo elastico o di consolidazione a prescindere dallo stato di rottura). Lo stesso concetto fa parte della più ampia trattazione agli stati limite (SL), volta ad armonizzare la progettazione strutturale con quella geotecnica.

Allo stato normativo attuale esistono ancora dubbi ed incertezze sulla procedura di determinazione dei valori caratteristici, nonostante che il D.M. 14/01/2008, "Norme tecniche per le costruzioni" abbia già adottato il concetto dei valori caratteristici, senza peraltro chiarirne la definizione e determinazione. Neanche la Circolare del 2 febbraio 2009 "Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008" entra nella specifica procedura.

La Circolare del Consiglio Superiore dei Lavori Pubblici, pubblicata nel sito della Regione Toscana, con carattere ancora ufficioso, chiarisce alcuni dettagli relativi alla determinazione dei valori caratteristici, ma non offre metodi operativi per la loro determinazione.

Si farà quindi riferimento alla trattazione specifica presentata dal dr. geol. Luca Nori nel Corso di aggiornamento professionale per geologi del 03/04/2009, organizzato dall'Ordine dei Geologi della Regione Emilia-Romagna – Consulta delle Province di Reggio Emilia e Modena "Caratterizzazione geotecnica e parametri di progetto secondo l'EC 7 e 8 ed il D.M. 14 Gennaio 2008 – Nuove norme tecniche per le costruzioni".

Il valore caratteristico X_k verrà quindi identificato sulla base delle seguenti regole:

- A. Se esiste compensazione spaziale (volume interessato dallo stato limite, o suo spessore in una dimensione, significativamente maggiore della lunghezza delle fluttuazioni nei parametri di resistenza del terreno), allora il valore caratteristico corrisponde al 5° percentile della media ed è generalmente non molto distante dalla media stessa.
- B. Se esiste compensazione strutturale (fondazioni sufficientemente rigide tali da distribuire le sollecitazioni omogeneamente sul terreno), allora il valore caratteristico è lo stesso del precedente caso A.
- C. Se non esiste compensazione strutturale, né compensazione spaziale, allora il valore caratteristico è il 5° percentile della distribuzione statistica del campione, ed è generalmente piuttosto distante dalla media.

Nel caso del Municipio in oggetto sono state adottate fondazioni nastriformi continue, per le quali è plausibile attendersi un comportamento rigido; pertanto si rientra nel caso B per il quale è prevista la procedura relativa alla compensazione strutturale, analoga al caso A.

Di seguito si riporta una sintesi schematica della procedura che è stata adottata per definire i parametri geotecnici caratteristici (X_k) riportati nelle tabelle penetrometriche in allegato.

o ù

ik

e e er a

e

ei na

lle co lla

da è

ore è

le ril

re i

	#	etri che seguono distribuzione normale (φ, γ) Si ipotizza media campione = media popolazione (controllando la congruenza!)
Superficie di rottura grande con compensazione spaziale o strutturale A o B (platea, fondazioni nastriformi non piccole)	I dati sono "non pochi" (orientativamente n≥5)	Si applica la formula rigorosa, con distribuzione di Student: $x_k = \overset{-}{x} - t_{0.05} \Big(n-1 \Big) \left(\frac{s}{\sqrt{n-1}} \right) \qquad \text{dove:} \\ x_k \text{ valore caratteristico desiderato} \\ \overset{-}{x} \text{ valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione t valore della distribuzione di Student ad n-1 gradi di libertà con probabilità u = 95% (ossia, 1\text{-}\alpha = 0.95 o alternativamente, \alpha = 0.05) s deviazione standard del campione n numero di dati.$
perficie di r azione spa idazioni na	chi (S	Si ipotizza media campione = valore del singolo dato o media popolazione (controllando la congruenza!)
Super opensaz sa, fonda	lo, o poc nte n < 5	Si ipotizza variabilità nota (dati di letteratura o esperienza individuale: six-sigma)
con con (plate	II dato è uno solo, o pochi (orientativamente n < 5)	Si applica la formula opportuna: $x_k = \overset{-}{x} - 1.645 \left(\frac{\sigma}{\sqrt{n}} \right) \qquad \text{dove:} \\ x_k \text{ valore caratteristico desiderato } \\ \overset{-}{x} \text{ valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione } \\ \sigma \text{ deviazione standard della popolazione = media dati / COV} \\ n \text{ numerosità del campione}$
O	pochi" : n ≥ 5)	Si ipotizza media campione = media popolazione (controllando la congruenza!)
Superficie di rottura piccola mpensazione spaziale o strutturale C ali, piccoli plinti, rottura locale)	l dati sono "non pochi" ⁺ (orientativamente n ≥ 5	Si applica la formula opportuna: $x_k = x - 1.645 * s \qquad \text{dove:} \\ x_k \text{ valore caratteristico desiderato} \\ \bar{x} \text{ valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione} \\ s \text{ deviazione standard del campione}$
Superficie di rottura pic compensazione spaziale (pali, piccoli plinti, rottura	pochi < 5)	Si ipotizza media campione = valore del singolo dato o media popolazione (controllando la congruenza!)
Superfi mpensa ali, picc	solo, o nente n	Si ipotizza variabilità nota (dati di letteratura o esperienza individuale: six-sigma)
Superficie di rottura pico senza compensazione spaziale o (pali, piccoli plinti, rottura l	II dato è uno solo, o pochi (orientativamente n < 5)	Si applica la formula opportuna: $x_k = \overline{x} - 1.645 * \sigma$ $x_k \text{ valore caratteristico desiderato } \overline{x} \text{ valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione } \sigma \text{ deviazione standard della popolazione = media dati * COV}$

Coefficiente di variazione $COV = \frac{\sigma}{\mu}$

dove:

 σ = deviazione standard della popolazione

 μ = media della popolazione

	i della variabilità (COV) uni parametri
PARAMETRO	COV
φ sabbie e ghiaie	7 - 10%
φ' coesivi	13%
C'	25 - 30%
Cu	20 - 30%
φ	10% (Schneider 1999)
Cu	40% (Schneider 1999)

	hi" ≥ 5)	Si ipotizza media campione = media popolazione (controllando la congruenza!)
Superficie di rottura grande con compensazione spaziale o strutturale A o B (platea, fondazioni nastriformi non piccole)	l dati sono "non pochi" (orientativamente n≥ 5	Si applica il metodo conservativo di Angus: $ \frac{t}{L_{1-\alpha}} \left(\overline{Y}, S^2\right) = \overline{Y} + \frac{S^2}{2} - \frac{t}{2} \frac{(n-1)}{\sqrt{n}} * \sqrt{S^2 \left(1 + \frac{S^2}{2}\right)} $
e di rott e spazia ni nastr	ii (Si ipotizza media campione = valore del singolo dato o media popolazione (controllando la congruenza!)
Superfici nsazion fondazio	o, o poch te n < 5)	Si ipotizza variabilità nota (dati di letteratura o esperienza individuale: six-sigma)
con compe (platea, 1	II dato è uno solo, o pochi (orientativamente n < 5)	Si applica il metodo di Cox: $L_{1-\alpha}\left(\overline{Y},S^2\right) = \overline{Y} + \frac{S^2}{2} \pm z_{1-\frac{\alpha}{2}} * \sqrt{\frac{S^2}{n}} + \frac{S^4}{2(n-1)} \qquad \text{dove:} \\ \frac{1}{2} \times \frac{1}{$
ccola o strutturale C ı locale)	ti sono "non pochi" ntativamente n ≥ 5)	Si ipotizza media campione = media popolazione (controllando la congruenza!)
	l dati sono ' (orientativan	Si applica la formula opportuna con un foglio di calcolo: INV.LOGNORM(0.05, media log dati, media SD log dati)
Superficie di rottura compensazione spazia (pali, piccoli plinti, rottu	o pochi n < 5)	Si ipotizza media campione = valore del singolo dato o media popolazione (controllando la congruenza!)
Superficie di rottura senza compensazione spazia (pali, piccoli plinti, rottu	II dato è uno solo, o pochi (orientativamente n < 5)	Si ipotizza variabilità nota (dati di letteratura o esperienza individuale: six-sigma)
senza	II dato è (orientat	Si applica la formula opportuna con un foglio di calcolo: INV.LOGNORM(0.05, media SD) con le trasformazioni opportune (*)

*

Formule di trasformazione per trovare il valore caratteristico con distribuzioni log-normali e un singolo dato o pochi dati, piccola superficie di rottura

$$\sigma_{logn} = \sqrt{ln \left(1 + \frac{\sigma^2_{norm}}{\mu^2_{norm}}\right)} \qquad \mu_{logn} = ln(\mu_{norm}) - \frac{\sigma^2_{logn}}{2} \qquad dove$$

 σ_{norm}^2 = varianza nota da letteratura o da esperienza

 μ^2_{norm} = valore del singolo dato o della media dei (pochi) dati

Con un foglio di calcolo: $X_k = INV.LOGNORM(0.05, \sigma logn, \mu logn)$

Le sezioni geotecniche litostratigrafiche A-A e B-B di fig.6-7 ricostruiscono schematicamente i terreni indagati, descrivendo:

- · la litostratigrafia;
- la resistenza specifica alla punta qc;
- i parametri geotecnici caratteristici X_k;
- il massimo innalzamento del livello piezometrico rilevato nel periodo monitorato.

I grafici comparativi delle penetrometrie statiche meccaniche CPT1-2-3 posti in allegato evidenziano le differenze che sussistono tra i terreni medio-fini che caratterizzano la porzione superiore e predominante del terrazzo alluvionale in esame e ne consentono l'analisi.

l dati penetrometrici qc, fs ed il loro rapporto qc/fs risultano alquanto dispersi fino a circa -7m da quota 0.00. Questa disomogeneità è dovuta:

- alla presenza di considerevoli spessori di terreni di riporto;
- alla sovraconsolidazione indotta dalla suzione di un tiglio presso CPT2;
- ad intrinseche differenze deposizionali/granulometriche e alla storia tensionale dei depositi.

Terreni di riporto

Si è rinvenuto uno spessore alquanto variabile di terreni di riporto costituiti da pavimentazioni passanti a sabbie limose, sabbie argilloso limose, da sciolte a mediamente addensate, con macerie. Se nel caso della CPT3 è stato possibile accertarne la presenza dall'osservazione delle carote del sondaggio S.3, in CPT1 si è ricorso all'analisi dei dati penetrometrici; la presenza di picchi di resistenza riconducibili a macerie, valori relativamente ai bassi di fs e talora di qc in genere contraddistinguono i riporti.

In corrispondenza della penetrometria CPT3 il riporto raggiunge la profondità di -3.4m, mentre in CPT1 sembra di -5m. In entrambi i casi la base del riporto risulta essere sottoposta alla quota del piano di fondazione del Municipio, desunta dagli elaborati/calcoli e dalle tavole del progetto consultato.

Peraltro, considerando che il Municipio non denota lesioni riconducibili a cedimento dei terreni di fondazione, si possono fare le seguenti ipotesi in merito alla presenza di riporto ad una quota inferiore al piano di fondazione:

- A. il piano di fondazione è stato effettivamente realizzato ad una quota inferiore a quanto viene definito negli elaborati/calcoli e tavole di progetto:
- B. il terreno di riporto si estende al di sotto della quota del piano di fondazione solo esternamente al sedime del Municipio, mentre le fondazioni insistono sul terreno in posto.

Non si esclude che i movimenti terra e le ricostruzioni riconducibili agli eventi bellici (bombardamenti e relativi profondi crateri) della ll^a guerra mondiale possano essere causa del notevole spessore dei riporti.

Suzione

L'analisi dei grafici comparativi posti i allegato identifica in CPT2 un'evidente sovraconsolidazione dei terreni rilevabile da un marcato aumento delle resistenze penetrometriche qc ed fs compreso tra -1 e -5.8m circa di profondità.

La CPT2 è stata realizzata al di sotto della chioma di un tiglio, il cui tronco è localizzato a 4m

dalla prova penetrometrica.

La caratteristica forma dei grafici penetrometrici fs e qc di CPT2 e l'esigua distanza tra la

prova e l'albero indicano che la sovraconsolidazione è attribuibile al tiglio.

Il fenomeno è denominato "suzione" ed è connesso all'evapotraspirazione provocata dagli alberi, i quali generano una sensibile risalita capillare dell'acqua interstiziale. Gli alberi hanno la necessità di procurarsi l'acqua ed il nutrimento utili per la loro attività vegetativa e pertanto agiscono analogamente ad una pompa, sottraendo acqua al terreno; ciò avviene con maggiore intensità durante la stagione estiva.

Trattandosi di un'azione che provoca risalita d'acqua, la pressione interstiziale assumerà valore negativo, quindi aumenterà la tensione efficace. Si assiste ad una sovraconsolidazione del terreno con diminuzione di volume (ritiro) e subsidenza, ovvero abbassamento del terreno. Si determinano frequentemente lesioni nei fabbricati per suzione indotta dagli alberi, in quanto questi provocano subsidenza del terreno proprio al di sotto delle fondazioni. Qui, infatti, durante la stagione estiva i terreni risultano più umidi poiché l'evaporazione provocata dal sole

è impedita dalla presenza degli edifici stessi. In genere la sovraconsolidazione è rilevabile da un aumento delle resistenze penetrometriche qc ed fs, contrassegnata dal tipico andamento triangolare dei grafici penetrometrici qc ed fs.

Lo spessore dei terreni sottoposti a suzione può anche essere denominato "zona attiva", cioè l'intervallo di profondità in cui si producono variazioni del contenuto d'acqua od umidità del

terreno, in questo caso la causa dell'essiccamento è la suzione indotta dal tiglio.

La suzione, pur avendo raggiunto in profondità una quota più bassa di quella del piano di fondazione del Municipio, sembra non avere coinvolto i terreni di fondazione dell'edificio, dato che lo spigolo prospiciente non denota lesioni riconducibili a cedimento dei terreni di fondazione. Ciò non è avvenuto in quanto tutta l'area urbana circostante risulta pavimentata e pertanto il tiglio non ha percepito un particolare eccesso di umidità al di sotto della fondazione e quindi non ha ivi determinato suzione. Si sottolinea che la distanza che intercorre tra il tronco del tiglio ed il Municipio è di 6÷7m, mente la chioma lo lambisce. Ciò significa che il tiglio è potenzialmente in grado di provocare suzione dei terreni di fondazione del Municipio. Peraltro, da specifici studi di ricercatori francesi, risulta che le radici e la relativa suzione possono raggiungere una distanza dal fusto pari al massimo ad 1.5 volte l'altezza dell'esemplare adulto dell'albero. Nel caso in esame il tiglio (adulto) denota altezza tale da essere potenzialmente in grado di raggiungere i terreni di fondazione del Municipio.

Nel caso si intenda scongiurare a priori la possibilità che in futuro il tiglio provochi lesioni dell'edificio comunale indotte dal cedimento dei terreni di fondazione, occorre abbattere l'albero. Oppure si potrebbero mantenere controllate le murature, le pavimentazioni e le strutture prospicienti il tiglio, in modo che se si determinassero delle setole, lesioni, fuori bolla dei pavimenti, fuori piombo delle murature o dei pilastri, si sarebbe immediatamente in grado di intervenire abbattendo l'albero ed interrompendo così la suzione-essiccamento-cedimento

del terreno di fondazione.

e

el

0

di

е

е

il

il

0

ne

za

da

re le

lla do

nto

geologo

SONDAGGIO A CAROTAGGIO CONTINUO

Il 18/09/2008 la SOGEO s.r.l. ha realizzato un sondaggio a carotaggio continuo (S.3), ubicato in fig.5, utilizzando una sonda ELLETTARI EK200STR.

L'esecuzione del sondaggio si è resa necessaria al fine di:

- tarare l'adiacente penetrometria statica CPT3 ed estrapolando le CPT1-2;
- caratterizzare il deposito ghiaioso ciottoloso che ha arrestato l'avanzamento di tutte le CPT;
- accertare la presenza del substrato al di sotto del deposito alluvionale terrazzato (AES8) su cui insiste il Municipio.

Si riportano in allegato la stratigrafia e le fotografie delle cassette catalogatrici delle carote.

Oltre alle informazioni geotecniche assunte con l'adiacente CPT3, si è cercato di caratterizzare ulteriormente i terreni i terreni medio-fini posti al di sopra di -10.10m dal p.c. di S.3 mediante l'utilizzo del pocket penetrometer e del vane test sulle carote di perforazione. Il comportamento incoerente dei terreni ha fatto si che le misurazioni non fossero utilizzabili, in quanto tali strumentazioni sono idonee solo per terreni coesivi o con componente coesiva predominante.

Il sondaggio ha evidenziato, al di sotto di 12.60m di profondità, la presenza di sabbie limose, talora limi sabbiosi, molto addensati, di colore grigio chiaro, dotati di umidità naturale. Sono stati rinvenuti rari cogoli, ⊘2÷3cm, arenacei a grana media, debolmente cementati, di colore bruno grigiastro. Inoltre rari livelli di:

- sabbie medie, ben cernite, molto addensate, di colore bruno;
- sabbie medio-fini limose, muscovitiche, molto addensate, di colore grigio con screziature nerastre.

La presenza di cogoli all'interno delle carote di perforazione e l'elevato addensamento del deposito (sovraconsolidazione) consente di attribuirlo al substrato e non al terrazzo alluvionale.

Pertanto alla profondità di -12.60m è stato identificato il tetto del substrato; le relative carote sono risultate molto rimaneggiate a causa della difficoltà di carotaggio indotta dall'elevato addensamento e dall'assenza di coesione e di cementazione.

Tutta la perforazione del substrato è avvenuta a secco, utilizzando sempre la massima coppia di potenza disponibile della sonda, in modo da non dilavare e disturbare eccessivamente le carote, La resistenza all'avanzamento del carotiere nel substrato si è mantenuta costante da 12,6m fino a fine sondaggio (15m).

Da queste evidenze, oltre che dalle risultanze della prova SPT della quale si riferirà oltre, si desume il carattere semilapideo del substrato.

PROVE PENETROMETRICHE DINAMICHE S.P.T.

Nel corso del sondaggio S.3 sono state realizzate due prove penetrometriche dinamiche S.P.T. in foro al fine di caratterizzare il deposito alluvionale ghiaioso-ciottoloso in matrice sabbiosa che ha arrestato le CPT ed il sottostante substrato.

Si tratta della Standard Penetration Test, codificata dalla norma A.S.T.M. Designation D 1586-67; la prova consiste nell'infiggere nel terreno, a fondo foro nel corso del sondaggio e con una frequenza di 20/25 colpi al minuto, il campionatore Raymond per mezzo di un martino a sganciamento automatico del peso di 63,5kg, cadente da un'altezza di 76,2cm.

Si rileva il numero di colpi N_1 , N_2 , N_3 necessario per la penetrazione di tre tratti consecutivi di 15cm. Il valore N_{SPT} è dato dalla somma di $N_2 + N_3$, ottenuti per il II° e per il III° tratto.

Il valore N_{SPT} è funzione della resistenza penetrometrica e dipende essenzialmente dal grado di addensamento per i terreni incoerenti e dalla consistenza per quelli coesivi.

Si sottolinea che le prove S.P.T. realizzate sono state condotte utilizzando la punta conica chiusa, cioè non è stato utilizzato il campionatore Raymond in ragione della presenza di ghiaia grossa e di ciottoli. Pertanto, in questo caso, il valore N_{SPT} deve essere ridotto del 30%, secondo le indicazioni di Palmer e Stuart.

Per la medesima ragione è comprensibile che non è stato possibile sia prelevare campioni indisturbati per mezzo di campionatori, sia testare le carote con strumenti quali il pocket penetrometer o lo scissometro.

Entrambe le prove S.P.T. hanno fornito N_{SPT} da rifiuto, ovvero valori talmente elevati da rendere irrealizzabile il raggiungimento della profondità alla quale rilevare N_2 ed N_3 ; addirittura non si è riusciti neanche a definire il valore N_1 in quanto non si è raggiunto l'affondamento standard di 15cm. Si ritiene che le risultanze (rifiuto) delle S.P.T. siano singolarmente rappresentative del deposito ghiaioso ciottoloso ed del substrato, in quanto la velocità di carotaggio si è mantenuta costante per entrambi i litotipi. Queste le risultanze:

Profondità S.P.T. m	N ₁	N ₂	N ₃	$N_{SPT}=$ N_2+N_3	Attribuzione geologica	Descrizione geotecnica-litostratigrafica
10.60	50/7.5cm RIFIUTO	1	-	-	Deposito di base del terrazzo alluvionale AES8 Subsintema di Ravenna	Ghiaie debolmente ciottolose, ben assortite, arrotondate, da mediamente addensate a molto addensate, in matrice sabbiosa, di colore bruno chiaro. Dotate di umidità naturale fino a 11.4m (rif. S.3), poi umide. Da 11.55m (rif. S.3) sature (in falda).
15.00	100/7.0cm RIFIUTO	=	-	-	Substrato ADO1 Formazione di M. Adone Membro di M. Mario	Sabbie limose, talora limi sabbiosi, molto addensati, semilapidei, di colore grigio chiaro, dotati di umidità naturale. Presenti rari cogoli, Ø2÷3cm, arenacei a grana media, debolmente cementati, di colore bruno grigiastro. Rari livelli di:
	,					 sabbie medie, ben cernite, molto addensate, di colore bruno; sabbie medio-fini limose, muscovitiche, molto addensate, di colore grigio con screziature nerastre.

Per l'attribuzione dei parametri geotecnici caratteristici X_k al deposito di base del terrazzo alluvionale ed al substrato non si è potuto ricorrere alle correlazioni abitualmente utilizzate a causa del rifiuto indotto dall'elevato addensamento.

Nel caso del deposito ghiaioso ciottoloso si è ritenuto cautelativo adottare i parametri geotecnici caratteristici X_k derivanti dalle CPT, ricorrendo alle correlazioni specifiche. Si sono esclusi i valori di resistenza più elevati in quanto riferibili alla presenza di ciottoli e pertanto non rappresentativi del comportamento geotecnico del deposito.

I parametri geotecnici caratteristici X_k sono riportati nelle tabelle penetrometriche e nelle sezioni geotecniche litostratigrafiche di fig.6-7.

In merito al substrato, per definire:

- φ e Dr% si è adottato il grafico di Searle, imponendo come tipo granulometrico quello delle sabbie limose e Dr =100%;
- γ_{nat} e γ_{sat} si sono adottate le correlazioni di Crow, 2004 e di AA.VV.:
- E si sono adottate le correlazioni di AA.VV..

I parametri geotecnici caratteristici X_k sono riportati nelle sezioni geotecniche litostratigrafiche di fig.6-7.

FONDAZIONI

Si intende procedere alla sopraelevazione di un piano dell'edificio municipale, il quale è attualmente costituito da tre piani fuori terra e da un piano seminterrato.

Da un'analisi preliminare il fabbricato appare classificabile:

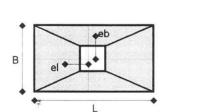
Tipo di costruzione: 3Vita nominale dell'opera V_N ≥ 100anni

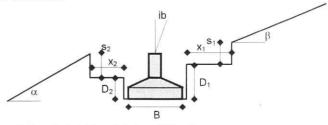
Classe d'uso dell'edificio: IV – Funzioni pubbliche e strategiche importanti anche con riferimento alla gestione della protezione civile in caso di calamità.

Coefficiente d'uso Cu = 2.0

Pertanto è indispensabile adottare le Norme Tecniche per le Costruzioni – D.M. 14/01/2008, come tra l'altro previsto dai recentissimi provvedimenti normativi approvati dal Senato con un emendamento al ddl di conversione del DL 39/2009 per l'Abruzzo, che anticipa dal 30 giugno 2010 al 30 giugno 2009 la scadenza del periodo transitorio, nel corso del quale è possibile applicare anche la normativa tecnica precedente (Decreti Ministeriali 20 novembre 1987, 3 dicembre 1987, 11 marzo 1988, 4 maggio 1990, 9 gennaio 1996 e 16 gennaio 1996, Norme tecniche per le costruzioni in zone sismiche). Pertanto dal 1º luglio 2009 saranno pienamente operative le NTC, e costituiranno l'unica normativa di riferimento per la progettazione.

Sono state reperite le tavole di progetto e la relazione di calcolo delle strutture in cemento armato e delle fondazioni del Municipio, datata 23/03/1968.


Nella pag.1 della suddetta relazione si legge:


"...ll terreno di fondazione per quanto è risultato in numerosi scavi effettuati in passato, è costituito da materiale sabbioso compatto, con distribuzione uniforme..."

Tale sommaria indicazione, si avvicina abbastanza a quella che è la reale litostratigrafia dei terreni di fondazione derivante dalle indagini geognostiche in sito:

alternanze di strati e livelli in lenti di sabbie argilloso limose e limi argilloso sabbiosi, mediamente addensati.

Questi sono i riferimenti dimensionali fondali adottati:

Con riferimento alla pianta delle fondazioni esistenti del Municipio di fig.5:

- Le fondazioni sono di tipo diretto nastriformi continue.
- La lunghezza di fondazione è: 9.75 < L < 34m

4

- La larghezza di fondazione è alquanto variabile da zona a zona: 0.7 < B < 2.1m
- Il piano di fondazione sembra essere strato impostato alla quota -4.30m da 0.00 = piano terra del Municipio. Vi è qualche incertezza nel definire se è stata adottata un'unica quota di fondazione dato che la quota del piano interrato non è univoca; le quote delle due porzioni del piano interrato sono -3.00 e -2.52m da 0.00, con dislivello ΔH = 0.48m.

ni et

ca

di 6.

da ira nto

nte di

en mente n matrice . a 11.4m

alda). osi, molto

e grigio e. renacei a entati, di

olto

ate, di nerastre.

azzo te a

metri sono anto

nelle

delle

fiche

afiche

Si potrà valutare se procedere ad un saggio presso le fondazioni per accertare la profondità di fondazione realmente adottata in fase esecutiva.

Se si assume un'unica quota del piano di fondazione (-4.30m), allora la profondità di fondazione:

1.30 < D < 1.78m.

- Inoltre, sempre a pag.1 della relazione di calcolo delle strutture in cemento armato e delle fondazioni del Municipio del 23/03/1968 viene indicato:
 - "...ll carico massimo ammissibile viene fissato, con largo margine di sicurezza, in 1.5kg/cm²....".

Peraltro non è nota la procedura di calcolo della Pamm.

A pag.5 e 7 vengono indicati i carichi di esercizio delle fondazioni:

 $1.36 < \sigma_{tmax} < 1.42 \text{kg/cm}^2$

Pertanto la pressione ammissibile massima definita nel progetto è stata rispettata dai carichi di esercizio delle fondazioni.

Da una prima ipotesi dei carichi imposti dalla sopraelevazione in progetto, formulata dall'ing. Andrea Negroni dell'Ufficio Tecnico del Comune di Sasso Marconi, è previsto un incremento dei carichi di esercizio delle fondazioni:

 $\Delta \sigma_{\text{tmax}} = 0.05 \text{kg/cm}^2$

Si tratta di un aumento esiguo, pertanto è prevedibile un modesto cedimento del terreno di fondazione indotto dal sovraccarico in progetto.

Solo il progettista strutturale è al corrente delle caratteristiche dell'opera che specificano i livelli di sicurezza e le prestazioni attese.

I diversi approcci e combinazioni di calcolo scelti dal progettista strutturale, che definiscono gli stati limite ultimi (SLU) e gli stati limite di esercizio (SLE) relativi alle verifiche:

- della capacità portante del terreno di fondazione.
- · dello scorrimento della fondazione,
- · dei cedimenti.

fanno riferimento alle azioni agenti sulle strutture (pesi e carichi permanenti, sovraccarichi variabili, inclinazione dei carichi, eccentricità, azione sismica, azioni del vento, azioni della neve, azioni della temperatura, azioni eccezionali) ed alle resistenze.

Queste ultime, le resistenze, sono funzione dei parametri geotecnici di resistenza al taglio e di compressibilità del terreno di fondazione, i quali sono stati definiti dallo scrivente nella presente relazione geologica-geotecnica.

UTILIZZO DEI PARAMETRI GEOTECNICI CARATTERISTICI XI

I parametri geotecnici caratteristici X_k del terreno di fondazione sono riportati nelle tabelle penetrometriche e nelle sezioni geotecniche litostratigrafiche di fig.6-7, utili per il calcolo e le verifiche:

- della capacità portante del terreno di fondazione,
- dello scorrimento della fondazione,
- · dei cedimenti,

sulla base dell'approccio e combinazione di calcolo scelti dal progettista strutturale.

Nelle tabelle penetrometriche e nelle sezioni geotecniche litostratigrafiche di fig.6-7, tra l'altro, è indicato il piano di fondazione, supposto a quota -4.30m (vedi pag.17-18).

l parametri geotecnici sono espressi in termini non drenati (Cu, φ), in quanto derivati da prove penetrometriche che sottopongono il terreno a rapida rottura senza consentirne il drenaggio.

la

di

lle

in

dai

ng. nto

o di

no i

o gli

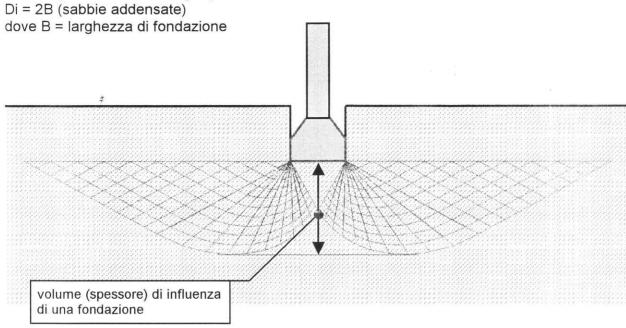
richi

della

e di nella

belle e le Ai fini del calcolo della capacità portante, il volume (spessore) di influenza di una fondazione comprende il cuneo di portata e le relative spirali logaritmiche ed è definito come valore medio o nominale uquale a:

1 ÷ 2 B dove:


B = larghezza di fondazione

Il coef. di influenza 1 si adotta per terreni poco addensati o poco consistenti.

Il coef. di influenza 2 si adotta per terreni molto addensati o molto consistenti.

Ugualmente, secondo Meyerhof and Hanna, 1978 ("Ultimate bearing capacity of foundations...", Canadian geotech. J.), la profondità di influenza della superficie di rottura:

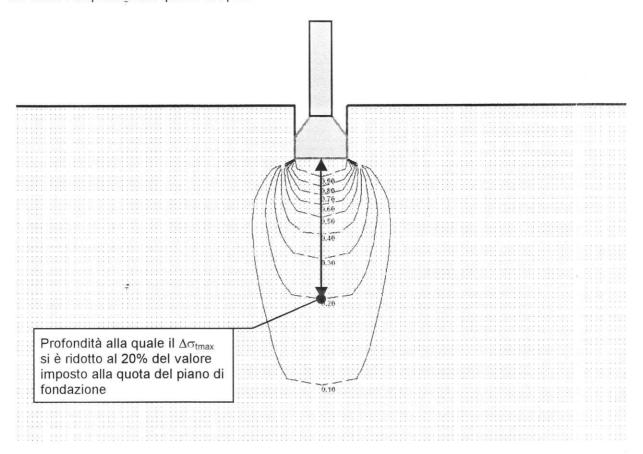
Di = B (sabbie sciolte e argille)

Nel caso del Municipio in oggetto, sulla base delle tavole e degli elaborati-calcoli di progetto, sono state adottate fondazioni nastriformi continue di larghezza 0.7 < B < 2.1m. l coefficienti di influenza seguenti sono stati calcolati secondo Meyerhof and Hanna, 1978, interpolando il coef. di influenza sulla base del tipo granulometrico e del relativo addensamento o consistenza.

CPT	Descrizione terreno compreso nel volume di influenza	Coefficiente di influenza	Volume (spessore) di influenza delle fondazioni
1	Sabbie limose, sabbie argilloso limose, da sciolte a mediamente addensate.	1	0.7 ÷ 2.1m
2	Limi argilloso sabbiosi, sabbie argilloso limose, da mediamente addensati ad addensati.	1.7	1.19 ÷ 3.57m
3	Sabbie argilloso limose, limi argilloso sabbiosi, mediamente addensati.	1.5	1.05 ÷ 3.15m

Si considererà la presenza della falda alla quota di massimo innalzamento della superficie piezometrica-freatica rilevata nel periodo di monitoraggio:

-11.63m da quota 0.00 = piano terra Municipio.


Anche la verifica dei cedimenti prevedibili verrà portata a termine utilizzando i parametri geotecnici caratteristici Xk riportati nelle tabelle penetrometriche e nelle sezioni geotecniche litostratigrafiche di fig.6-7. Ciò avverrà sulla base delle azioni derivanti dall'incremento di carico di esercizio sul piano di fondazione = $\Delta \sigma_{tmax}$.

altro,

prove gio.

l cedimenti verranno calcolati fino alla profondità alla quale il $\Delta \sigma_{\text{tmax}}$ si è ridotto al 10%÷20% del valore imposto alla quota del piano di fondazione.

SISMICITÀ

Normativa

Si adottano le Norme Tecniche per le Costruzioni – D.M. 14/01/2008, come tra l'altro previsto dai recentissimi provvedimenti normativi approvati dal Senato con un emendamento al ddl di conversione del DL 39/2009 per l'Abruzzo, che anticipa dal 30 giugno 2010 al 30 giugno 2009 la scadenza del periodo transitorio, nel corso del quale è possibile applicare anche la normativa tecnica precedente (Decreti Ministeriali 20 novembre 1987, 3 dicembre 1987, 11 marzo 1988, 4 maggio 1990, 9 gennaio 1996 e 16 gennaio 1996, Norme tecniche per le costruzioni in zone sismiche).

Pertanto dal 1° luglio 2009 saranno pienamente operative le NTC, e costituiranno l'unica normativa di riferimento per la progettazione.

Di seguito si espone la sismicità del sito di intervento relativamente alle Norme Tecniche per le Costruzioni di cui al DM 14 gennaio 2008.

Nel QCGI.07 – Integrazione Zonizzazione Sismica e nel QCGI.08 – Note illustrative alla Zonizzazione Sismica - aggiornamento Maggio 2007 del PSC vigente del Comune di Sasso Marconi vengono condotte analisi geologiche rivolte a stabilire le condizioni di edificabilità, in riferimento all'interazione struttura-substrato, al tipo ed al grado di pericolosità sismica locale. Lo studio suddivide il territorio comunale il macrozone: l'edificio municipale in oggetto rientra in un'area caratterizzata da limitazione sismica C.

a

geologo

Storia sismica di Sasso Marconi

Si fa riferimento a Stucchi et alii. (2007) DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04.

http://emidius.mi.ingv.it/DBMI04/ Quaderni di Geofisica, Vol 49, pp.38

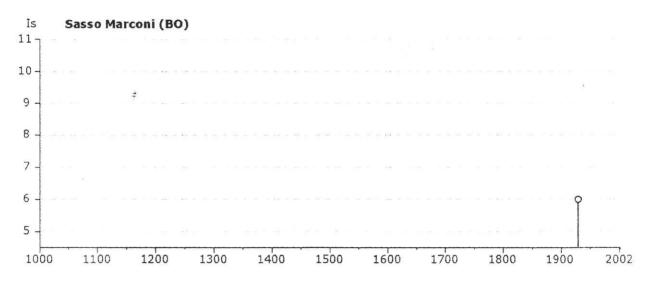
Il Database Macrosismico Italiano 2004 ha raccolto e organizzato in modo critico i dati macrosismici utilizzati per la compilazione del catalogo parametrico CPTI04 (2004).

Questi dati provengono da alcuni dataset principali:

- I) DOM4.1 (Monachesi e Stucchi, 1997);
- II) CFTI versione 2 (Boschi et al., 1997) e, per la finestra temporale 1980-2002, CFTI versione 3 (Boschi et al., 2000);
- III) Bollettino Macrosismico ING (BMING);
- IV) Catalogo Macrosismico dei Terremoti Etnei, Azzaro et al. (2000; 2002).
- In aggiunta sono confluiti anche dati provenienti da ricerche storiche e indagini di campo recenti.

Il DBMI04 contiene 58146 osservazioni riferite a 12041 terremoti e 14161 località, 12943 delle quali in Italia. I dati confluiti non erano omogenei quanto a uso della scala macrosismica e soprattutto quanto a riferimento geografico. Una delle principali attività ha riguardato la organizzazione di un riferimento geografico comune, basato sul precedente Catalogo ENEL-ISTAT 1971 delle località abitate italiane (ENEL, 1978), che è stato aggiornato con nuovi dati. Un'altra attività ha riguardato la correzione di errori nella associazione della località alla informazione proveniente dalle fonti. Infine, sono stati risolti alcuni problemi collegati con la classificazione di effetti non espressi in termini di scala macrosismica.

Storia sismica di Sasso Marconi	(BO)	[44.395,	11.248]
Osservazioni disponibili: 6			


ls	Anno	Мe	Gi	Or	Mi	Se	AE	lo	Mw	Rt	Rt1
6	1929	04	20	01	09	46	Bolognese	7	5.55	CFTI	BOA997
3-4	1957	08	27	11	54		Zocca	6	5.06	DOM	GDTSP
3-4	1987	05	02	20	43	53	Reggiano	6	5.05	DOM	GDTRD
3	1983	11	09	16	29	52	Parmense	6-7	5.10	CFTI	BOA000
2-3	1986	12	06	17	07	19	Bondeno	6	4.56	DOM	GDTRD
NF	1995	08	24	17	27	33	Appennino bolognese	6	4.67	INGVAM	INGVAM

Parametro	Descrizione	Provenienza
NDBMI04	Identificativo del record	
NCPTI04	Identificativo del terremoto	CPTI04 (N)
Anno	Tempo origine: anno	CPTI04 (Anno)
Me	Tempo origine: mese	CPTI04
Gi	Tempo origine: giorno	CPTI04
Or	Tempo origine: ora	CPTI04
Mi	Tempo origine: minuti	CPTI04
Se	Tempo origine: secondi	CPTI04
AE	Denominazione dell'area dei maggiori effetti	CPTI04
Rt	Codice bibliografico dell'elaborato di riferimento (compatto)	CPTI04
Rt1	Codice bibliografico dell'elaborato di riferimento (esplicitato)	
lo	Intensità epicentrale (MCS)	CPTI04
Mw	Magnitudo momento	CPTI04 (Maw)
ls	Intensità al sito (MCS)	

Note:

- NF non avvertito (not felt): in presenza di segnalazione esplicita è equiparabile a I = 1
- i valori di lx e lo, a differenza di CPTI04, sono qui riportati in originale ovvero non moltiplicati per 10 (es: 6-7 anziché 65, 7 anziché 70);
- per 18 terremoti il valore di lx riportato da CPTI04 è leggermente diverso dal valore massimo delle intensità osservate contenute nel database, come conseguenza della revisione dei dataset originali;
- per 46 terremoti Np è leggermente diverso da Np1, come conseguenza della revisione dei dataset originali;
- per i dati provenienti da DOM i parametri LocOr, LatOr, LonOr e IsOr sono quelli contenuti in DOM stesso e non quelli forniti dallo studio originale.

La storia sismica di Sasso Marconi (BO) riporta come intensità massima al sito: Is_{max} = 6(MCS).

Il grado della scala MCS (Mercalli - Cancani - Sieberg), essendo basato sugli effetti osservabili del terremoto, è valutabile con semplicità ed immediatezza, ma fornisce una stima relativa circa la violenza del terremoto.

La Magnitudo (M) richiede tempi tecnici per la valutazione, ma rappresenta una misura assoluta e confrontabile.

Nonostante la differenza concettuale tra energia erogata ed intensità degli effetti, è ragionevole aspettarsi che, a parità di condizioni, all'aumentare della Magnitudo debba aumentare anche il valore della scala MCS.

Per terremoti superficiali dell'Appennino centrale esiste infatti la seguente relazione empirica tra Magnitudo e scala MCS:

M = 0.40 I + 1.69

dove

M = magnitudo, a cui fa riferimento la scala Richter

l = intensità massima, a cui fa riferimento la scala MCS - Mercalli Cancani Sieberg Nel nostro caso $ls_{max} = 6(MCS)$:

M = 0.40.6 + 1.69 = 4.09 (Richter)

Riassumendo, la storia sismica di Sasso Marconi (BO) riporta come intensità massima al sito: $Is_{max} = 6(MCS)$ a cui compete Magnitudo M = 4.09 (Richter)

re

lei

uti

02

abili tiva

ura

bba

irica

Liquefazione

La liquefazione del terreno è un fenomeno caratterizzato da un improvviso collasso-cedimento con forte decremento della resistenza al taglio dei terreni e temporaneo aumento delle pressioni interstiziali. Si determina in seguito a sollecitazione sismica e solamente in terreni costituiti da sabbie con poco fine, sciolte, in falda.

Le penetrometrie ed il sondaggio a carotaggio continuo condotti non hanno identificato terreni potenzialmente liquefacibili, ovvero sabbie con poco fine, sciolte, in falda.

Quanto appena asserito concorda con quanto riporta la Relazione Geologica del Quadro Conoscitivo del PSC vigente del Comune di Sasso Marconi, il quale, relativamente alla liquefazione, recita:

"...Per il fondovalle del F. Reno, la pericolosità sismica si concentra attorno ad una valutazione dell'amplificazione locale (funzione soprattutto dello spessore e delle caratteristiche meccaniche dei sedimenti alluvionali), e sulla questione della possibile liquefazione dei sedimenti in cui può essere incastrata la fondazione di possibili edifici di progetto. Per la questione della liquefazione occorre precisare che tutte le prove di repertorio censite, indicano l'assenza delle condizioni fondamentali perché si verifichi un tale grave inconveniente. Infatti la tessitura dei sedimenti rinvenuti in condizioni di saturazione è sempre tale da non poter produrre fenomeni di liquefazione (che sono poi processi reologici connessi all'aumento della pressione interstiziale).

Non si hanno a Sasso Marconi registrazioni storiche di questi processi. La presenza di sabbie è sempre accompagnata o da ciottoli e limi, o da un fuso granulometrico (variazione del diametro dei granuli) così disperso da offrire buone garanzie. Inoltre lo stesso esiguo spessore degli strati sabbiosi, per lo più associati a ghiaie, offre margini di sicurezza considerevole.

In sostanza la ricerca delle condizioni di suscettibilità alla liquefazione dei sedimenti, da effettuarsi in fase di POC per i nuovi insediamenti, dovrà essere eseguita solamente dopo aver analizzato con cura la successione alluvionale e verificato che le sabbie sature, eventualmente presenti con potenze significative (maggiori di 60 centimetri), non ricadano nelle condizioni richiamate nelle recentissime "Norme tecniche per il progetto sismico di opere di fondazione e di sostegno dei terreni".

Si fa riferimento alle:

"Nuove norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008

7.11.3.4 Stabilità nei confronti della liquefazione

7.11.3.4.1 Generalità

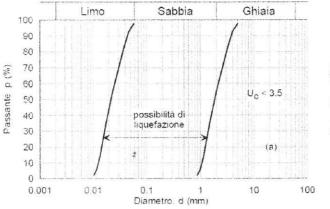
Il sito presso il quale è ubicato il manufatto deve essere stabile nei confronti della liquefazione, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate.

Se il terreno risulta suscettibile di liquefazione e gli effetti conseguenti appaiono tali da influire sulle condizioni di stabilità di pendii o manufatti, occorre procedere ad interventi di consolidamento del terreno e/o trasferire il carico a strati di terreno non suscettibili di liquefazione.

In assenza di interventi di miglioramento del terreno, l'impiego di fondazioni profonde richiede comunque la valutazione della riduzione della capacità portante e degli incrementi delle sollecitazioni indotti nei pali.

7.11.3.4.2 Esclusione della verifica a liquefazione

La verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:


- eventi sismici attesi di magnitudo M inferiore a 5;
- accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;
- 3. profondità media stagionale della falda superiore a 15m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- 4. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60} > 30$ oppure $qc_{1N} > {}^{\dagger}180$ dove $(N_1)_{60}$ è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100kPa e qc_{1N} è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100kPa;

ito:

- 23 -

5. distribuzione granulometrica esterna alle zone indicate nella Figura 7.11.1(a) nel caso di terreni con coefficiente di uniformità Uc < 3,5 ed in Figura 7.11.1(b) nel caso di terreni con coefficiente di uniformità Uc > 3,5.

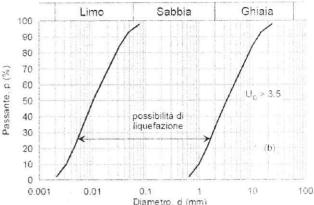


Figura 7.11.1 - Fusi granulometrici di terreni suscettibili di liquefazione.

Quando le condizioni 1 e 2 non risultino soddisfatte, le indagini geotecniche devono essere finalizzate almeno alla determinazione dei parametri necessari per la verifica delle condizioni 3, 4 e 5.

Facendo riferimento al suddetto paragrafo 7.11.3.4.2 Esclusione della verifica a liquefazione punto 1 ("Norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008), nel quale si dice che la verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

1. eventi sismici attesi di magnitudo M inferiore a 5,

nel caso in esame la storia sismica di Sasso Marconi (BO) riporta come intensità massima al sito Magnitudo M = 4.49 (Richter).

Da ciò si evince che l'intensità massima prevista al sito non è sufficientemente elevata da produrre liquefazione delle sabbie con poco fine, sciolte, in falda, che peraltro non sono state identificate dalle indagini in sito condotte.

Tale evidenza depone a sfavore della liquefazione, considerando quanto viene riportato dalle "Nuove norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008 al paragrafo

7.11.3.4.3 Metodologie di analisi

Quando nessuna delle condizioni del § 7.11.3.4.2 risulti soddisfatta e il terreno di fondazione comprenda strati estesi o lenti spesse di sabbie sciolte sotto falda, occorre valutare il coefficiente di sicurezza alla liquefazione alle profondità in cui sono presenti i terreni potenzialmente liquefacibili.

Parimenti si esprime la Delibera regionale progr. n.112 del 2 maggio 2007 della Regione Emilia Romagna nell'allegato A3 paragrafo 1 punto 1 a pag.29:

- 1. CASI IN CUI SI PUÒ ESCLUDERE CHE SI VERIFICHINO FENOMENI DI LIQUEFAZIONE La probabilità che nei terreni sabbiosi saturi si verifichino fenomeni di liquefazione è bassa o nulla se si verifica almeno una delle seguenti condizioni¹⁵:
 - 1. Eventi sismici attesi di magnitudo M inferiore a 5;
- 15 Vedi anche Linee Guida AGI, 2005

Da cui si evince che sono suscettibili alla liquefazione strati estesi o lenti spesse di sabbie sciolte sotto falda, cioè un contesto litostratigrafico non riscontrato nel sito in oggetto.

V_{S30} e caratterizzazione dei sottosuoli

In base al capitolo 3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE delle Norme Tecniche per le Costruzioni - Decreto Ministeriale 14/01/2008, ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi, come indicato nel § 7.11.3.

In assenza di tali analisi, per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III).

Tabella 3.2.II - Categorie di sottosuolo

Categoria	Descrizione		Parametri		
			N _{SPT,30}	c _{u,30} kPa	
Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di V _{s,30} superiori a 800m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3m.	>800			
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _s ,30 compresi tra 360m/s e 800m/s (ovvero Nspt,30 > 50 nei terreni a grana grossa e cu,30 > 250kPa nei terreni a grana fina).	<800 >360	>50	>250	
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _s ,30 compresi tra 180m/s e 360m/s (ovvero 15 < N _{SPT,30} < 50 nei terreni a grana grossa e 70 < c _{u,30} < 250kPa nei terreni a grana fina).	<360 >180	<50 >15	<250 >70	
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V _s .30 inferiori a 180m/s (ovvero N _{SPT,30} < 15 nei terreni a grana grossa e c _{u,30} < 70kPa nei terreni a grana fina).	<180	<15	<70	
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20m, posti sul substrato di riferimento (con V _s > 800m/s).				

Per le cinque categorie di sottosuolo, le azioni sismiche sono definite al § 3.2.3 delle Norme Tecniche per le Costruzioni - Decreto Ministeriale 14/01/2008.

Fatta salva la necessità della caratterizzazione geotecnica dei terreni nel volume significativo¹, ai fini della identificazione della categoria di sottosuolo, la classificazione si effettua in base ai valori della velocità equivalente Vs,30 di propagazione delle onde di taglio (definita successivamente) entro i primi 30 m di profondità.

Per le fondazioni superficiali, tale profondità è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

La misura diretta della velocità di propagazione delle onde di taglio è fortemente raccomandata. Nei casi in cui tale determinazione non sia disponibile, la classificazione può essere effettuata in base ai valori del numero equivalente di colpi della prova penetrometrica

- 25 -

Tri

te

100

ate

fazione.

e ice elle

da da ate

enda

alla

alle

ella

nulla

bbie

¹ Per volume significativo di terreno si intende la parte di sottosuolo influenzata, direttamente o indirettamente, dalla costruzione del manufatto e che influenza il manufatto stesso.

dinamica (Standard Penetration Test) NSPT,30 (definito successivamente) nei terreni prevalentemente a grana grossa e della resistenza non drenata equivalente cu,30 (definita successivamente) nei terreni prevalentemente a grana fina.

Per queste cinque categorie di sottosuolo, le azioni sismiche sono definite al § 3.2.3 delle NTC.

Per sottosuoli appartenenti alle ulteriori categorie S1 ed S2 di seguito indicate (Tab.3.2.III), è necessario predisporre specifiche analisi per la definizione delle azioni sismiche, particolarmente nei casi in cui la presenza di terreni suscettibili di liquefazione e/o di argille d'elevata sensitività possa comportare fenomeni di collasso del terreno.

Tabella 3.2.III - Categorie aggiuntive di sottosuolo.

Categoria		Parametri		
	Descrizione	V _{s,30} m/s	N _{SPT,30}	c _{u,30} kPa
S 1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100m/s (ovvero 10 < $c_{u,30}$ < 20kPa), che includono uno strato di almeno 8m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3m di torba o di argille altamente organiche.	<100		<20 >10
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.			

La velocità equivalente delle onde di taglio $V_{s,30}$ è definita dall'espressione

$$V_{s,30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_{s,i}}}$$
 [m/s].

La resistenza penetrometrica dinamica equivalente N_{SPT,30} è definita dall'espressione

$$N_{SPT,30} = \frac{\sum_{i=1,M} h_i}{\sum_{i=1,M} \frac{h_i}{N_{SPT,i}}}.$$

La resistenza non drenata equivalente c_{u,30} è definita dall'espressione

$$c_{u,30} = \frac{\sum_{i=l,K} h_i}{\sum_{i=l,K} \frac{h_i}{c_{u,i}}}.$$

Nelle precedenti espressioni si indica con:

h_i spessore (in metri) dell'i-esimo strato compreso nei primi 30m di profondità;

V_{s.i} velocità delle onde di taglio nell'i-esimo strato;

N_{SPT,i} numero di colpi N_{SPT} nell'i-esimo strato;

cui resistenza non drenata nell'i-esimo strato:

N numero di strati compresi nei primi 30m di profondità;

M numero di strati di terreni a grana grossa compresi nei primi 30m di profondità;

K numero di strati di terreni a grana fina compresi nei primi 30m di profondità.

eni nita

go

), è he, gille

elle

30 Pa

20 10 Nel caso di sottosuoli costituiti da stratificazioni di terreni a grana grossa e a grana fina, distribuite con spessori confrontabili nei primi 30m di profondità, ricadenti nelle categorie da A ad E, quando non si disponga di misure dirette della velocità delle onde di taglio si può procedere come seque:

- determinare N_{SPT,i} limitatamente agli strati di terreno a grana grossa compresi entro i primi 30m di profondità;
- determinare c_{u,i} limitatamente agli strati di terreno a grana fina compresi entro i primi 30m di profondità;
- individuare le categorie corrispondenti singolarmente ai parametri N_{SPT,i} e c_{u,i};
- riferire il sottosuolo alla categoria peggiore tra quelle individuate al punto precedente.

Nel sito in oggetto le indagini geognostiche (geotecniche) hanno raggiunto la profondità di 15m dal piano campagna, cioè non hanno raggiunto 30m di profondità dal piano di fondazione a causa dei considerevoli costi che si sarebbero dovuti sostenere. Tuttavia hanno raggiunto e caratterizzato il substrato per 2.4m.

Si è allora ricorsi ad un indagine geofisica mediante tecnica MASW attiva (Multichannel Analisys of Surface Waves), eseguita dalla ditta IGB s.n.c. il 24/09/2008 al fine di ottenere la classificazione del tipo di sottosuolo sulla base della velocità media equivalente di propagazione delle onde di taglio verticali (Vs) entro i primi 30m di profondità, in ottemperanza a quanto riportato nel decreto del Ministero delle Infrastrutture, 14 gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni" (pubblicate sulla Gazzetta Ufficiale n. 29 del 4 febbraio 2008, Supplemento ordinario n. 30).

Lo scrivente ha fornito alla IGB s.n.c. la pianta del Municipio, le tabelle ed i grafici penetrometrici, la stratigrafia del sondaggio e le sezioni geotecniche litostratigrafiche di fig. 6-7 utili per la taratura dell'indagine geofisica.

La descrizione della metodologia della MASW attiva ed il rapporto dei dati sperimentali e dei risultati dell'analisi prodotti dalla IGB s.n.c. sono riportati in allegato.

Di seguito si riporta un estratto relativo alle conclusioni:

"... la media ponderata dei valori di velocità delle onde S (V_{s30}), nei primi 30 m di profondità dal piano campagna, risultata pari a **489 m/s**, colloca il sottosuolo in classe **B**.

Considerando invece la media ponderata dei valori di velocità delle onde S (V_{s30}), nei primi 30 m di profondità a partire dal piano di fondazione (- 5.00 m da p.c. attuale) dell'edificio oggetto d'intervento, essa risulta pari a 573 m/s, e colloca il sottosuolo ancora in classe B. Il valore di V_{s30} comunque ottenuto è da riferirsi alla verticale di terreno posta in corrispondenza del punto mediano dell'allineamento sismico effettuato....

Vs30 [m/s] nei primi 30m dal piano campagna	
Questo sito è classificabile secondo una delle classi A, B, C, D, E o S1 (terreno alluvional ghiaia, sabbia, limo, argilla, roccia).	le,

Questo sito non è suscettibile alla liquefazione e non è caratterizzato da argille sensitive.

Categoria di suolo......B"

#

Amplificazione stratigrafica

Per sottosuolo di categoria ${f A}$ i coefficienti S_S e C_C valgono 1.

Per le categorie di sottosuolo B, C, D ed E i coefficienti S_s e C_c possono essere calcolati, in funzione dei valori di F_\circ e $T^*_{\mathbb{C}}$ relativi al sottosuolo di categoria A, mediante le espressioni fornite nella Tab. 3.2.V seguente, nelle quali:

- g = accelerazione di gravità;
- il tempo è espresso in secondi:
- a_g = accelerazione orizzontale massima al sito;
- \bullet F_{\circ} = valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_C = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

In allegato alle "Norme tecniche per le costruzioni" di cui al DM 14 gennaio 2008, per tutti i siti considerati, sono forniti i valori di $a_{\rm g}$, $F_{\rm o}$ e $T^*_{\rm C}$ necessari per la determinazione delle azioni sismiche.

Tabella 3.2.V - Espressioni di Ss e Cc

Categoria sottosuolo	S_{S}	\mathbf{C}_{C}		
A	1,00	1,00		
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot (T_{c}^{*})^{-0.20}$		
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05\cdot (T_C^*)^{-0.33}$		
D	$0,90 \le 2,40-1,50 \cdot F_0 \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_C^*)^{-0.50}$		
E	$1,00 \le 2,00 - 1,10 \cdot F_{\alpha} \cdot \frac{a_g}{g} \le 1,60$	$1,15\cdot (T_{\rm C}^*)^{-0.40}$		

Condizioni topografiche

Per condizioni topografiche complesse è necessario predisporre specifiche analisi di risposta sismica locale. Per configurazioni superficiali semplici si può adottare la seguente classificazione (Tab. 3.2.IV):

Tabella 3.2.IV - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

ni

siti

oni

osta

ente

0°

geologo

In base alla morfologia della zona ed alla pendenza media (β = 1.9° = 3.4%) del territorio circostante, il sito in oggetto rientra nella categoria T1.

Le suesposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30m.

Amplificazione topografica

Per tener conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella Tab. 3.2.VI, in funzione delle categorie topografiche definite in § 3.2.2 e dell'ubicazione dell'opera o dell'intervento.

Tabella 3.2.VI − Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_1
TI		1,0
Т2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1.2
T4	In corrispondenza della cresta del rilievo	1,4

La variazione, spaziale del coefficiente di amplificazione topografica è definita da un decremento lineare con l'altezza del pendio o rilievo, dalla sommità o cresta fino alla base dove S_T assume valore unitario.

Determinazione dei parametri sismici

Tipo di costruzione: 3Vita nominale dell'opera V_N ≥ 100anni

Classe d'uso dell'edificio: IV – Funzioni pubbliche e strategiche importanti anche con riferimento alla gestione della protezione civile in caso di calamità.

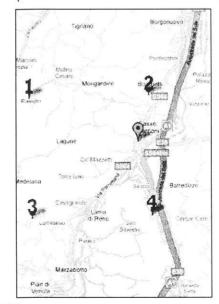
Coefficiente d'uso Cu = 2.0

Periodo di riferimento per l'azione sismica $V_R = V_N \cdot Cu$

Di seguito verranno calcolati i parametri sismici ipotizzando vita nominale dell'opera:

 $V_N = 100$ anni e $V_N = 250$ anni

Latitudine 44.3943


Longitudine 11.2448

Sito in oggetto

Vertici della maglia di appartenenza

Vita nominale 100 anni					
Stato Limite	Tr anni	a _g g	Fo	Tc [*]	
Operatività (SLO)	120	0,100	2,490	0,284	
Danno (SLD)	201	0,121	2,490	0,288	
Salvaguardia vita (SLV)	1898	0,249	2,524	0,315	
Prevenzione collasso (SLC)	2475	0,268	2,539	0,318	
Periodo di riferimento per l'azione sismica V _R :	200				

Vita nominale 250 anni					
Stato Limite	Tr anni	a _g g	Fo	Tc [*] s	
Operatività (SLO)	301	0,140	2,483	0,291	
Danno (SLD)	503	0,168	2,477	0,296	
Salvaguardia vita (SLV)	2475	0,268	2,539	0,318	
Prevenzione collasso (SLC)	2475	0,268	2,539	0,318	
Periodo di riferimento per l'azione sismica V _R :	500				

Sasso Marconi (BO), 29/05/2009

dr. geol. Paolo Dal Pian

ALLEGATI

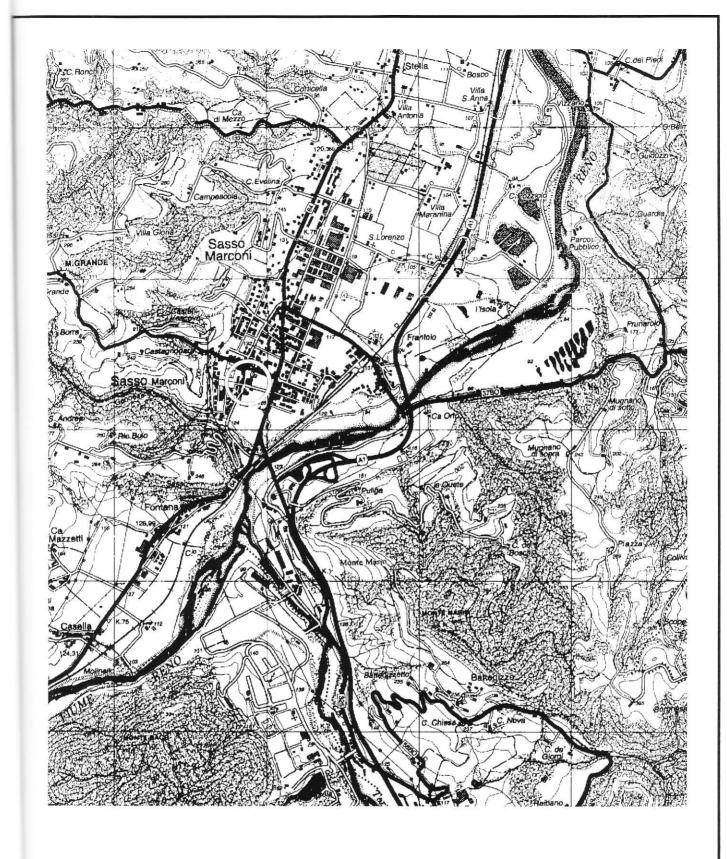
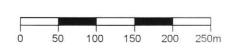



Fig.1 ESTRATTO CARTA TECNICA REGIONALE

scala 1:25.000

Û

Ubicazione del sito

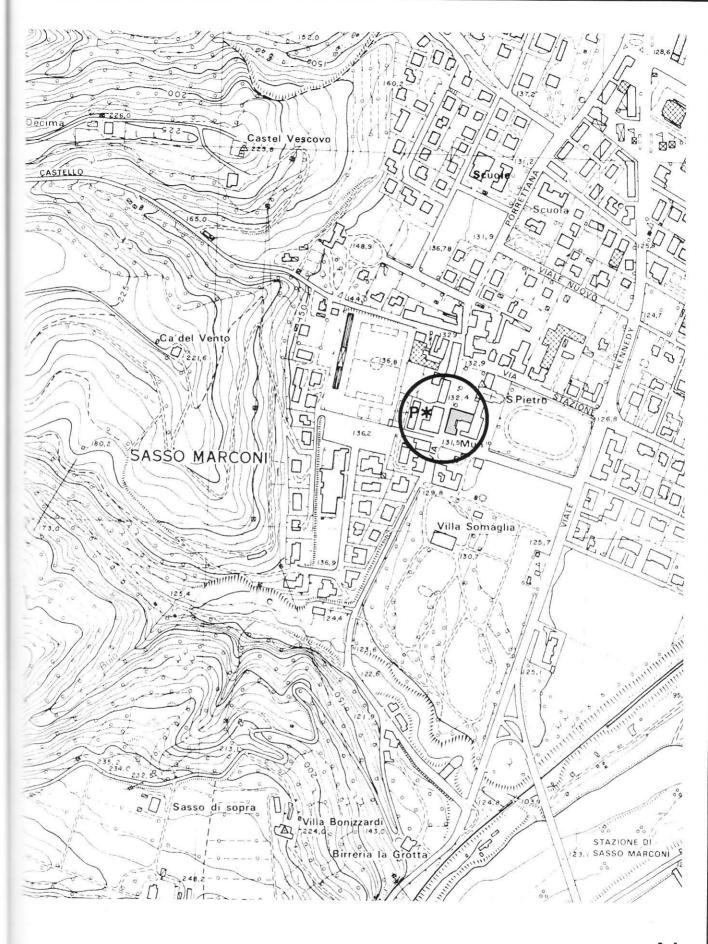
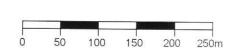
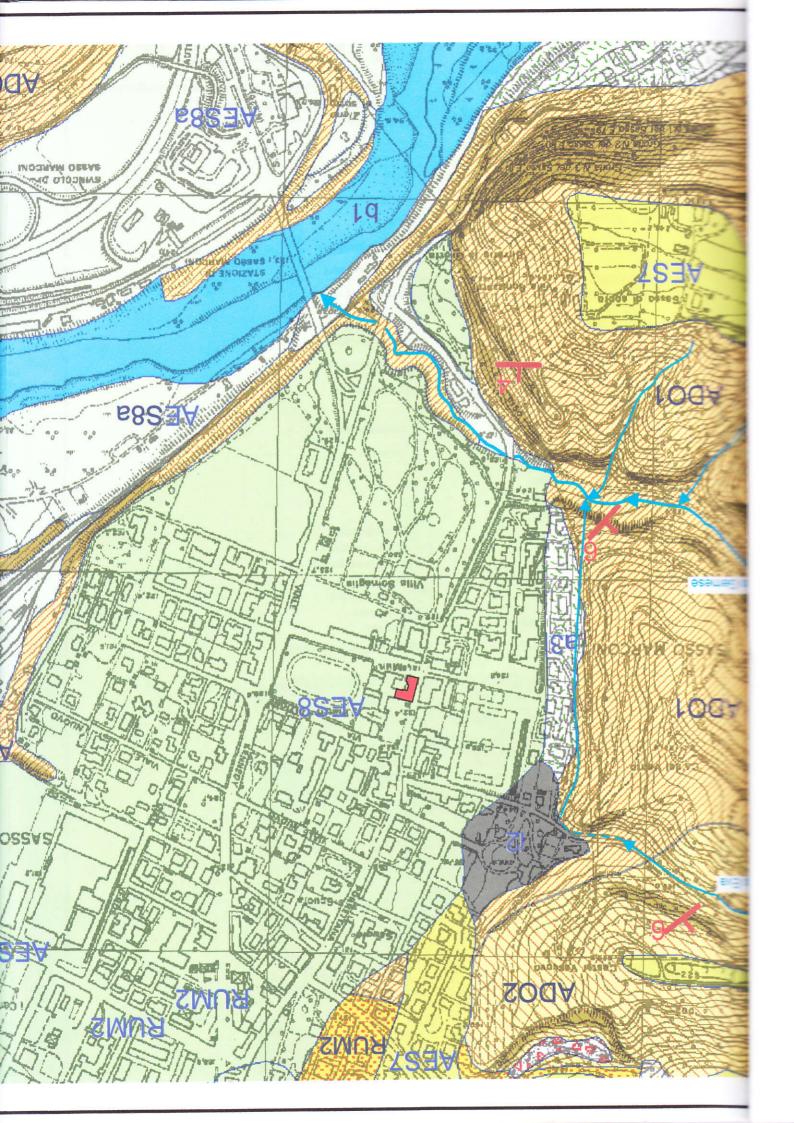


Fig.2 ESTRATTO CARTA TECNICA REGIONALE

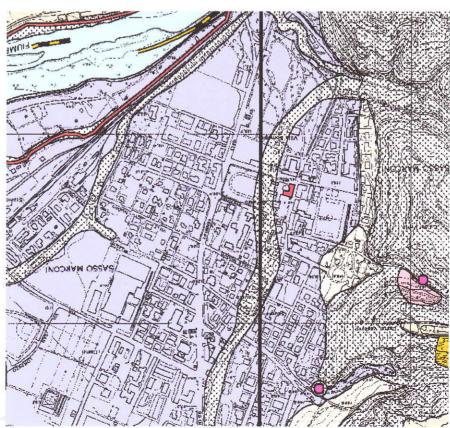

scala 1:5.000

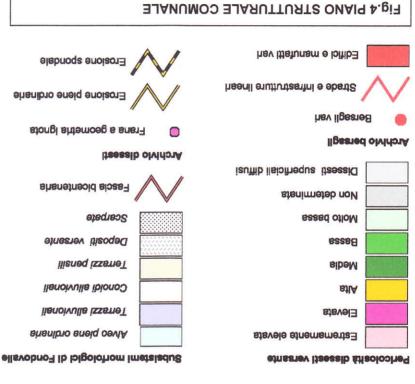
N


5

Municipio

P* Pozzo Farmacia dei Sani





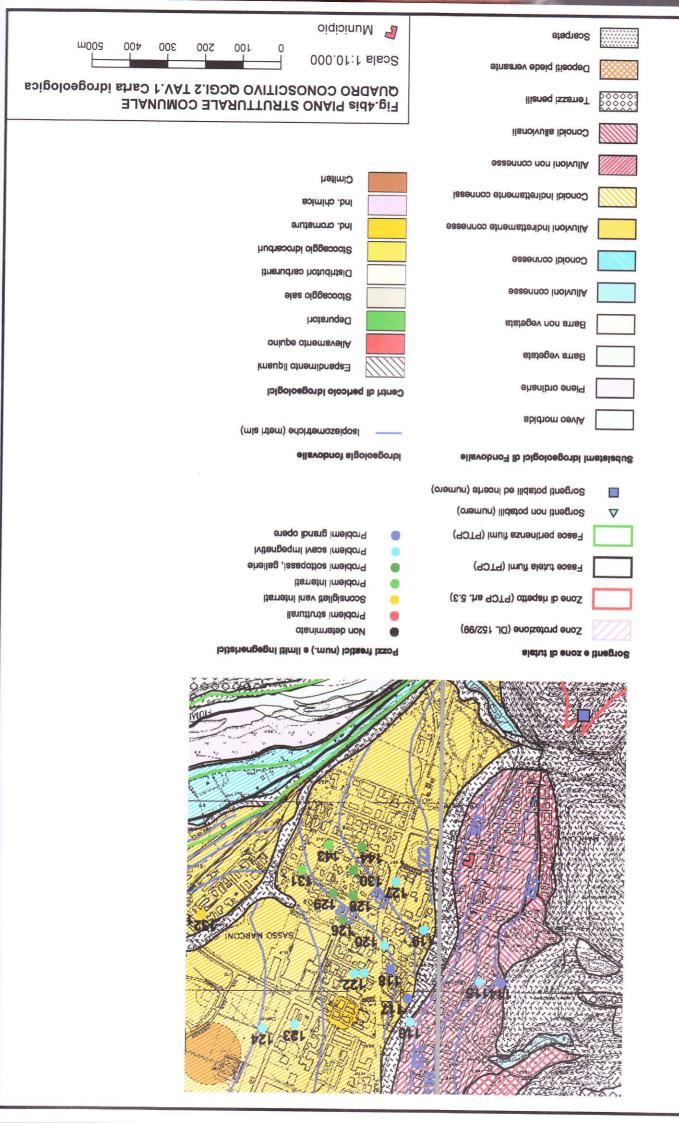
Rappresentazione cartografica delle unità. Giacitura degli strati. Pliocene inf. livelli di gesso selenitico. Potenza fino a 300 m. spessi a geometria tabulare e lenticolare. Nelle peliti possono localmente essere presenti Lamellibranchi) addensati. Intercalazioni di ghiaie e conglomerati in strati spessi e molto grigio, giallastre se alterate; sono presenti livelli a macrofossili (Gasteropodi e Argille, spesso sabbiose, sabbie e arenarie in strati da sottili a molto spessi, di colore RUM2 - Formazione di Monterumici - membro di Cà di Mazza Pliocene medio e sup. - Pleistocene inf.? metri a circa 350 m. tabulare, obliqua a grande scala e localmente cuneiforme. Potenza da poche decine di Areniti e subordinati conglomerati in strati da medi a molto spessi con stratificazione ADDA - Formazione di Monte Adone - Membro di Monte Mario Pliocene medio e sup. - Pleistocene inf.? Macrofossili concentrati in letti. Potenza massima di circa 650m. geometria tabulare, cuneiforme e concava. Talora presenti livelli di peliti grigio scure. Areniti fini e subordinate peliti sabbiose bioturbate in strati da medi a molto spessi; ADO2 - Formazione di Monte Adone - membro delle Ganzole Pleistocene sup. (per posizione stratigrafica). intravallivi. Limite inferiore erosivo e discordante sui sottostanti depositi marini. Chiaie sovrastate da limi più o meno sabbiosi, organizzate in alcuni ordini di terrazzi AES7 - Subsintema di Villa Verucchio Lta post-romana (IV-VI sec. d.C. - Attuale; datazione archeologica). una superficie di erosione fluviale nelle aree intravallive. privo di reperti archeologici romani, o piu' antichi, non rimaneggiati. Limite inferiore dato da sempre affiorante dato da un suolo calcareo di colore bruno olivastro e bruno grigiastro sbocchi vallivi e nella piana alluvionale ghiaie, sabbie, limi ed argille. Limite superiore Nei settori intravallivi ghisie prevalenti organizzate in 2 ordini di terrazzi alluvionali. Negli AES8a - Unità di Modena Pleistocene sup. - Olocene (14 ka - attuale; datazione 14C). softostanti. Bronzo, del Ferro e Romana. Limite inferiore erosivo sui depositi marini e alluvionali argille. Limite superiore dato da suoli contenenti frequenti reperti archeologici di età del terrazzi alluvionali. Megli sbocchi vallivi e nella piana alluvionale ghiaie, sabbie, limi ed Nei settori intravallivi ghiaie passanti a sabbie e limi organizzate in numerosi ordini di AES8 - Subsintema di Ravenna SUCCESSIONE NEOGENICO - QUATERNARIA DEL MARGINE APPENNINICO PADANO vallecole trasversali ai corsi d'acqua, attualmente non soggetti ad evoluzione. Depositi alluvionali, prevalentemente ghiaiosi, in corrispondenza dello sbocco di valli e is - Conoide torrentizia inattiva variazioni dovute alla dinamica fluviale. SO MARCONI Chiaie, talora embriciate, sabbie e limi argillosi di origine fluviale, attualmente soggetti a b1 - Deposito alluvionale in evoluzione essere dubitativamente gravitativa, da ruscellamento superficiale e/o da soliflusso. Deposito costituito da litotipi eterogenei ed eterometrici più o meno caotici. La genesi può La estrasante di versante s.l. DEPOSITI QUATERNARI CONTINENTALI Elementi idrografici minori Municipio 100 scala 1:5.000 SEZIONE 537040 - BADOLO Edizione 2007 SEZIONE 237030 - SASSO MARCONI Edizione 2007 DELLA REGIONE EMILIA-ROMAGNA:

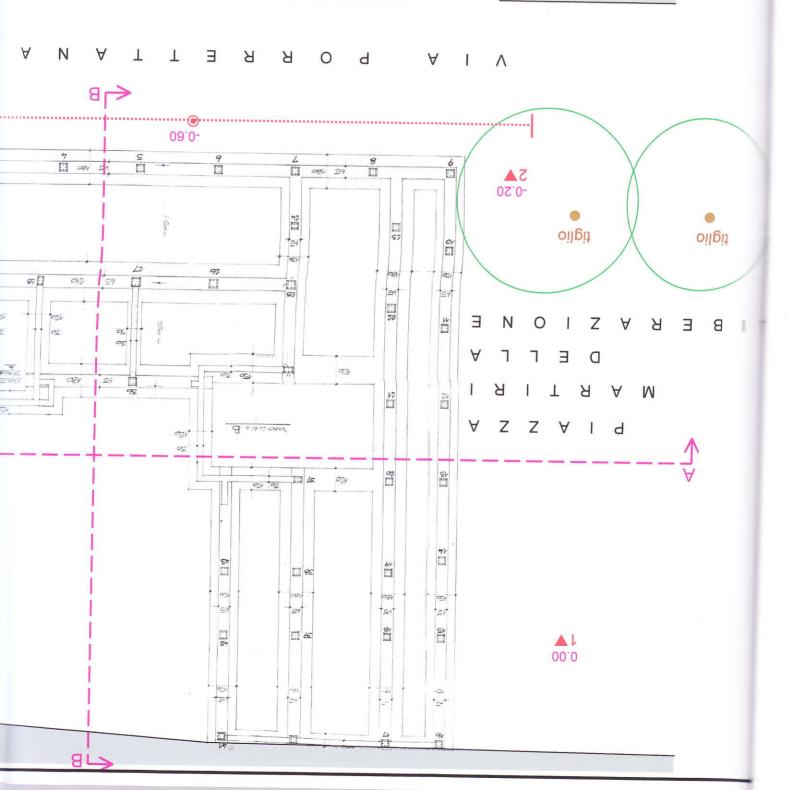
Fig.3 ESTRATTO DELLA CARTA GEOLOGICA DELL'APPENNINO EMILIANO-ROMAGNOLO

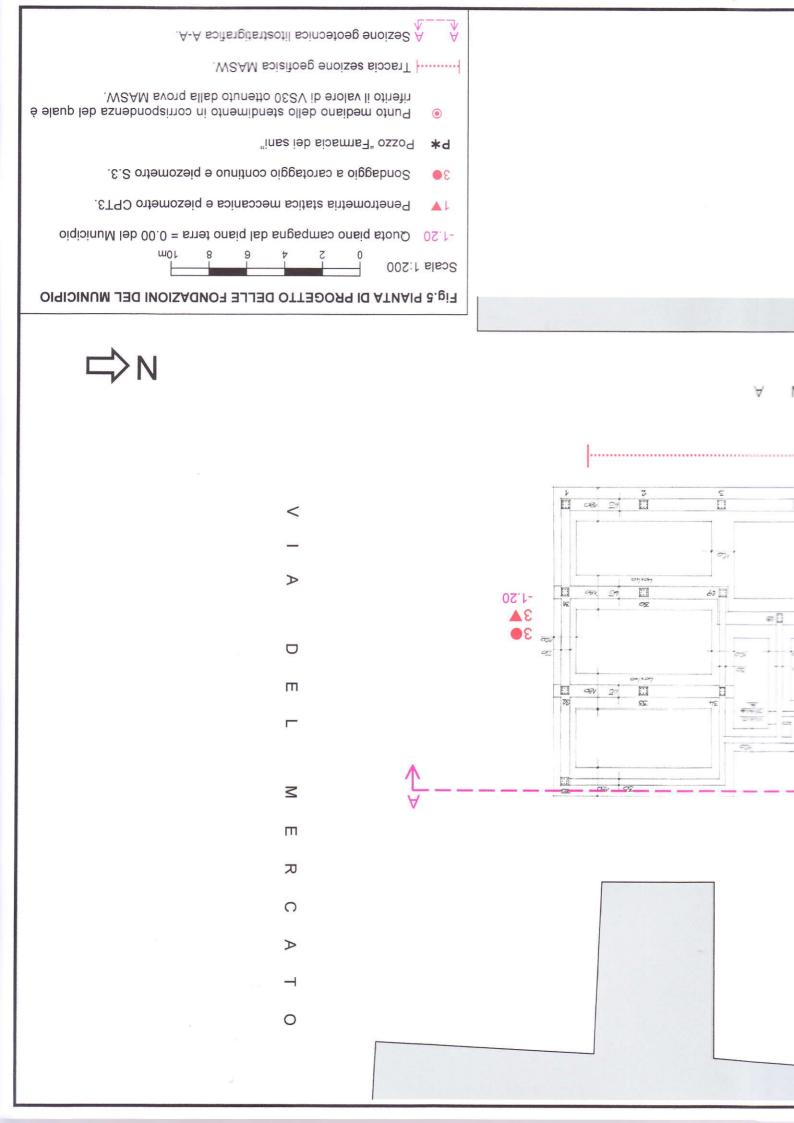
m003

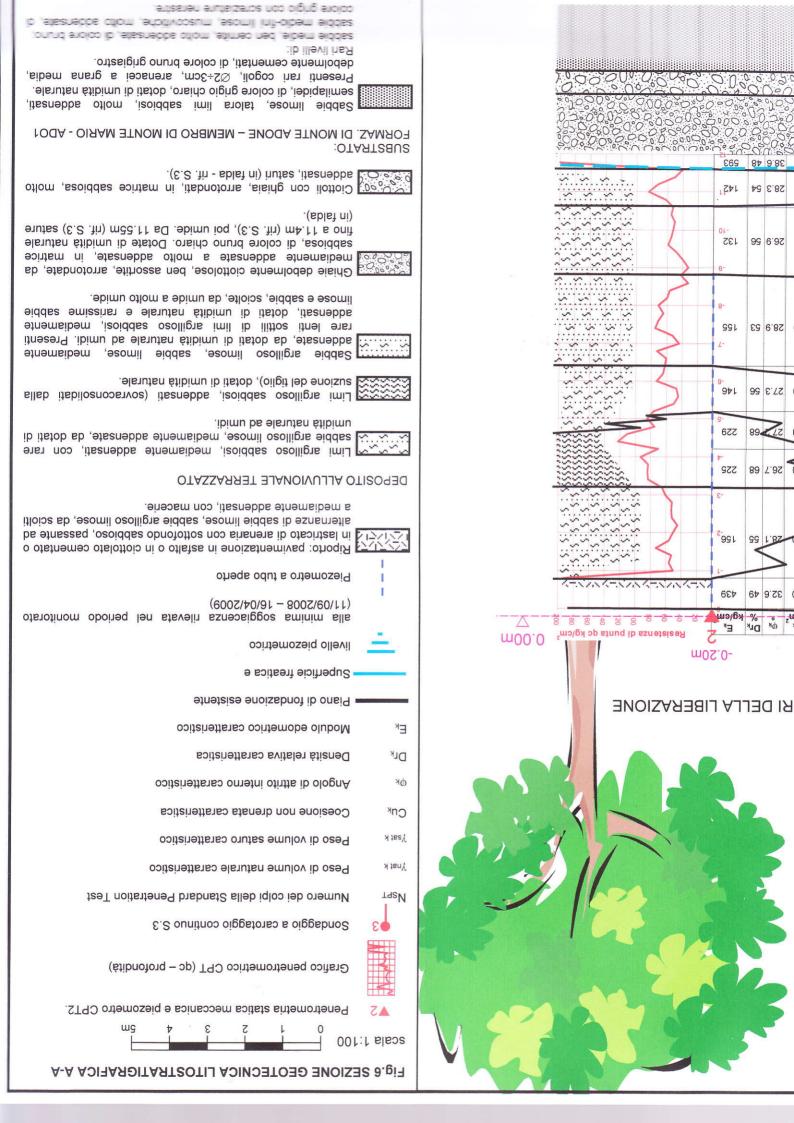
00t

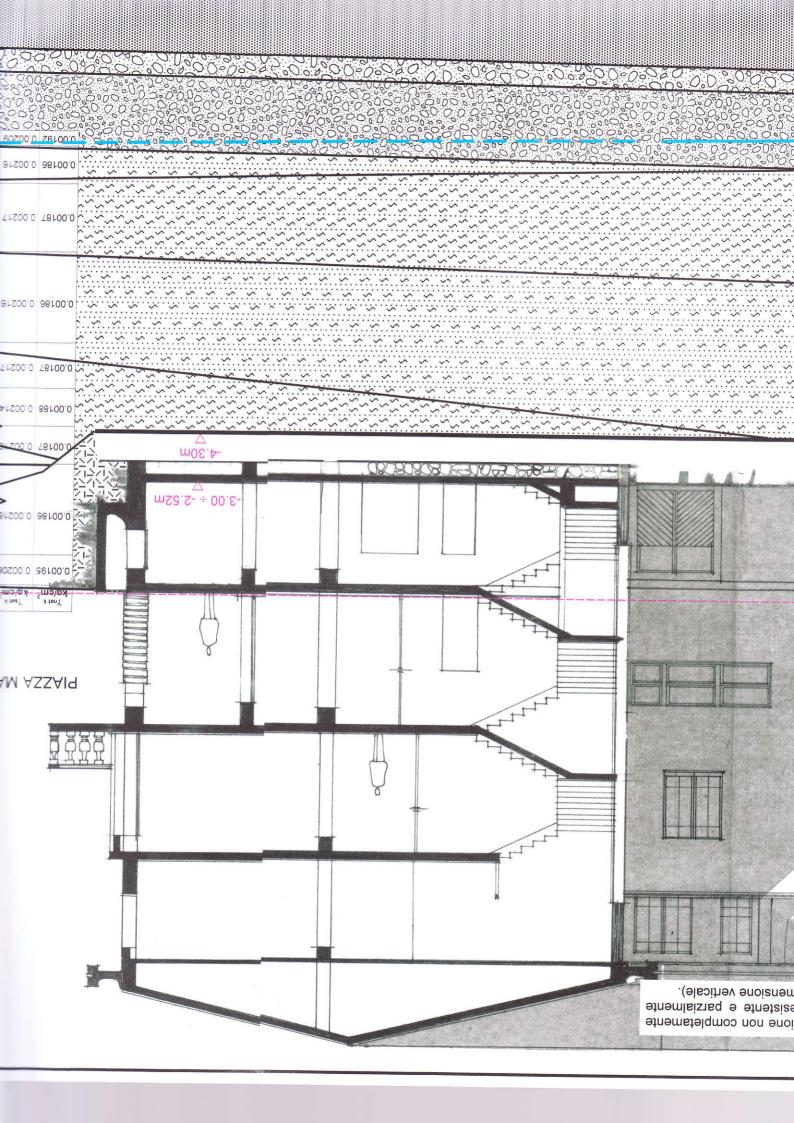
300

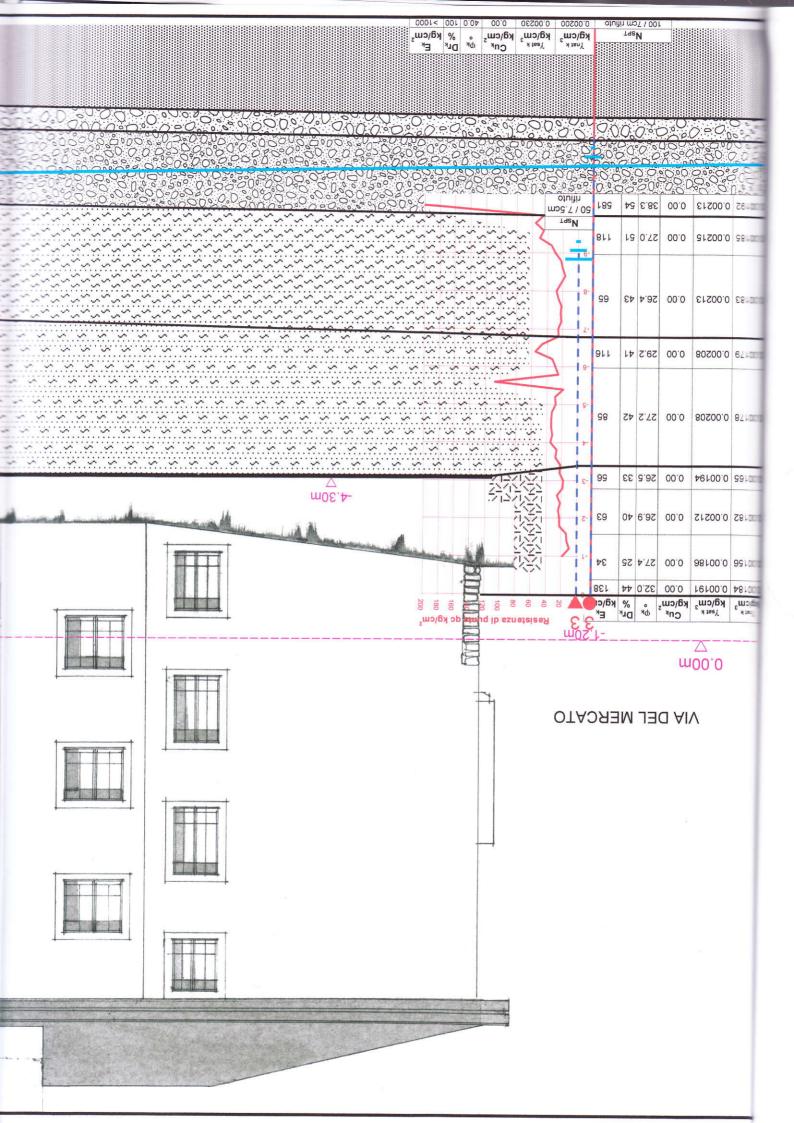

200

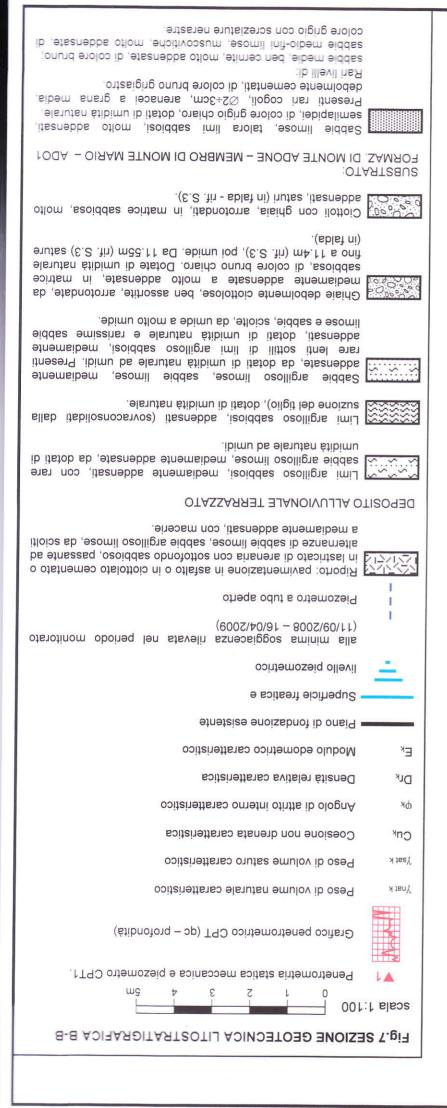

QUADRO CONOSCITIVO QCGI.1 TAV.1 Dissesti di versante

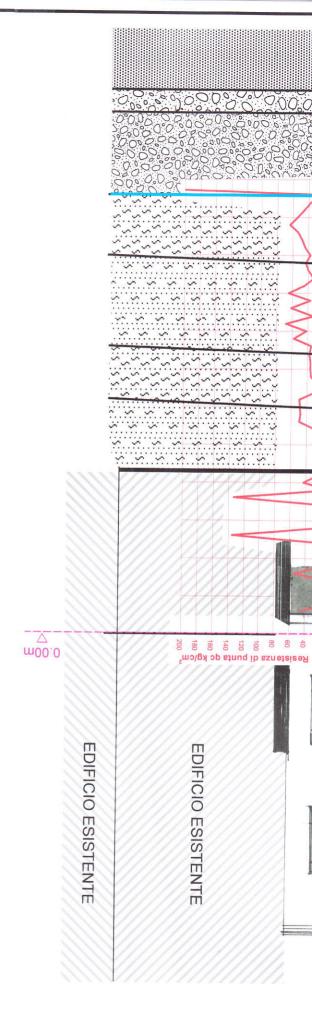

100

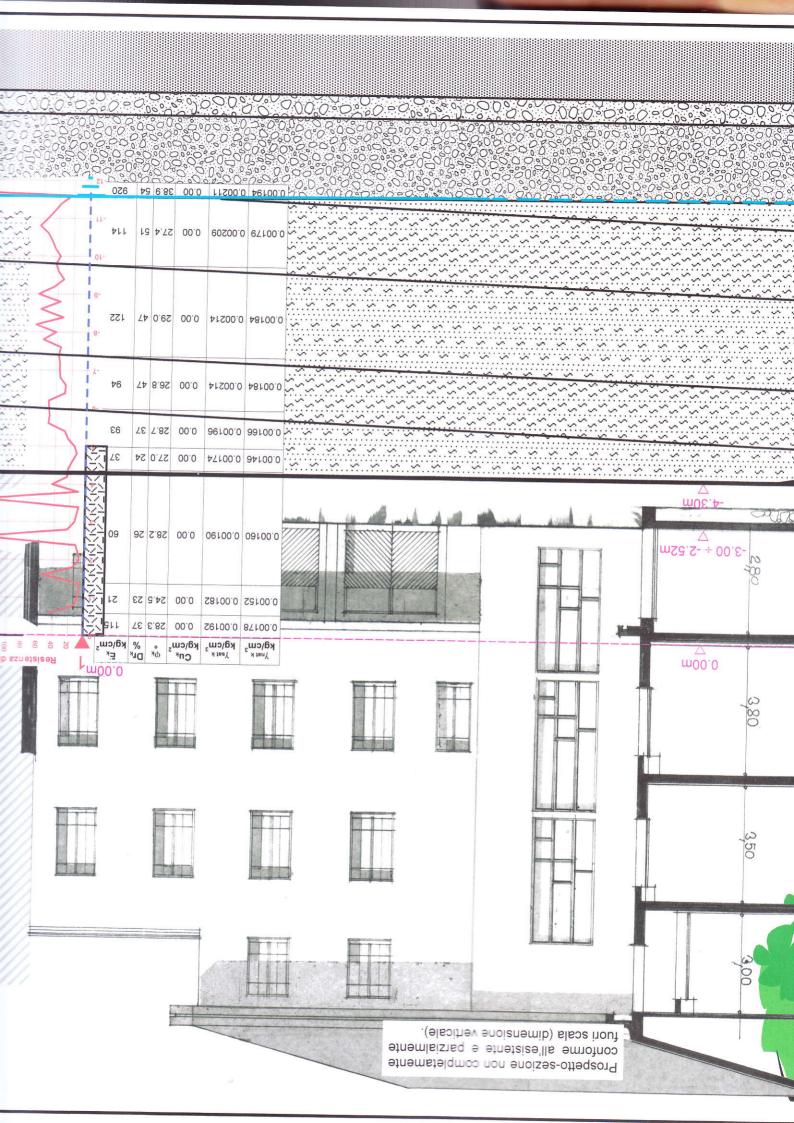

Municipio

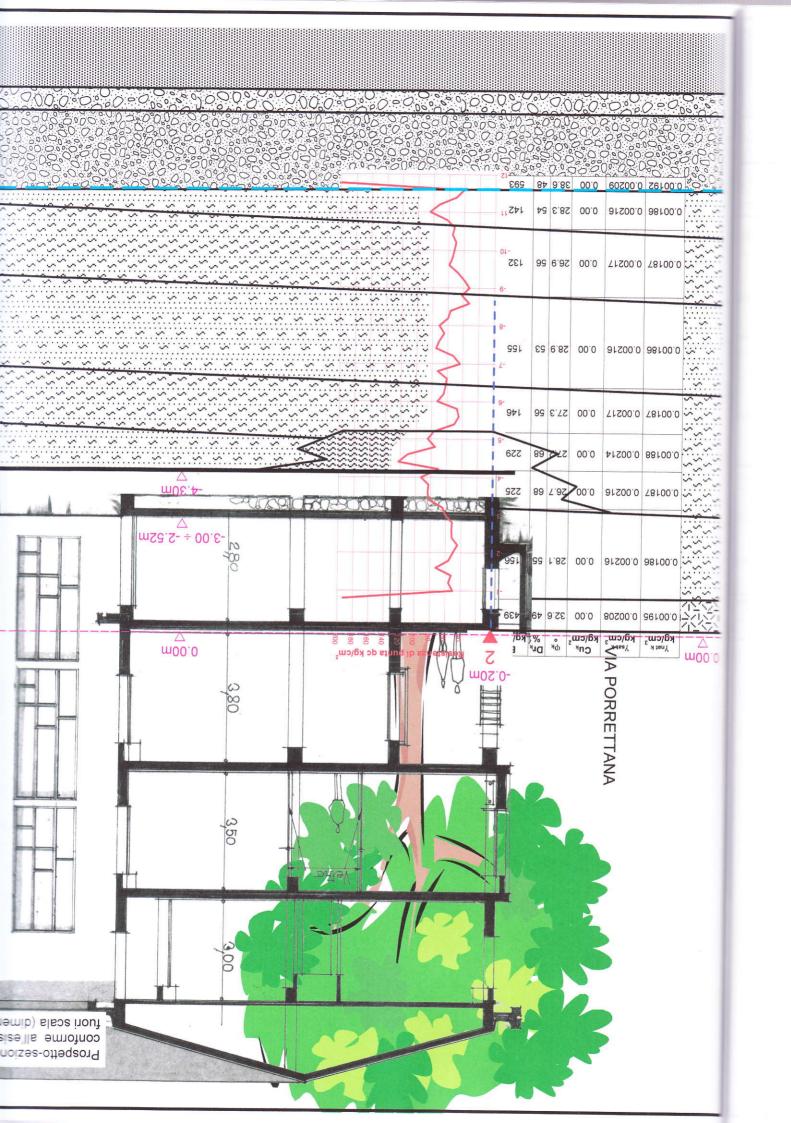

Scala 1:10.000











T = torbe, AT = argille torbose, A = argille, AL = argille limosa, LA = limi argillosi, Я = гіроґо, М = тасегіе,

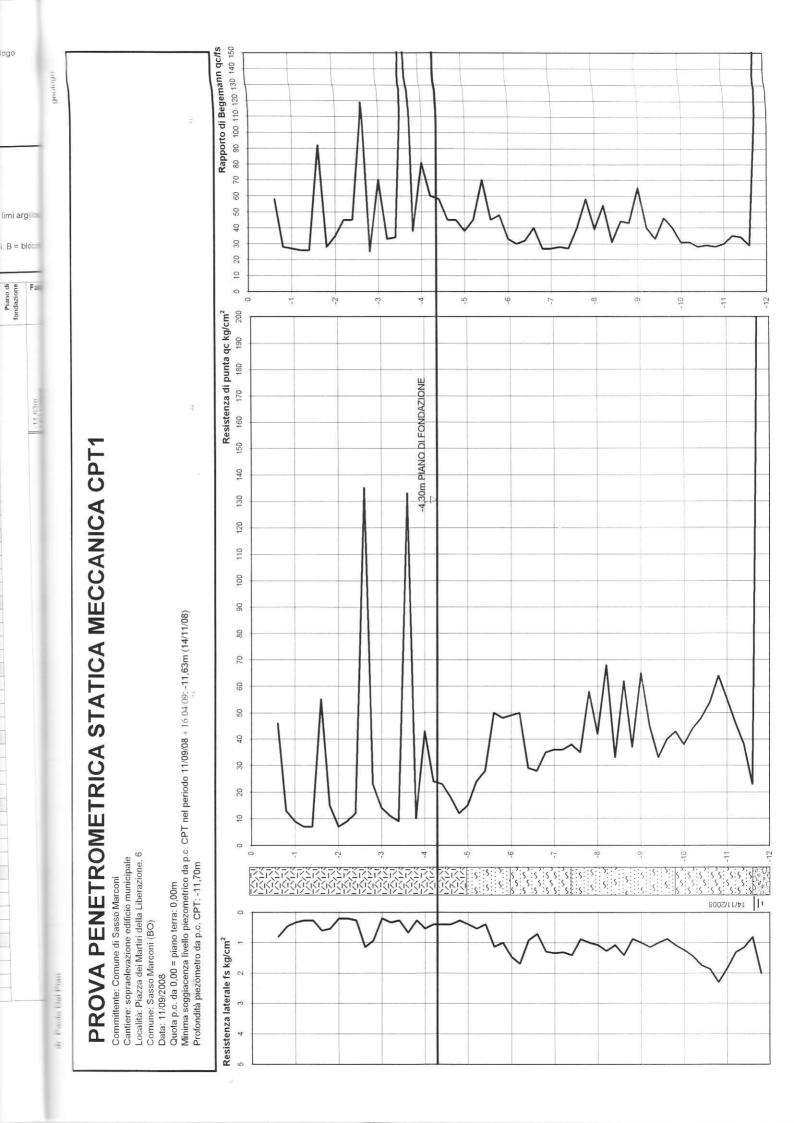
LEGENDA

SG = sabbie ghiaiose, GS = ghiaie sabbiose, G = ghiaie, C = ciottoli, B = blocchiLAS = limi argilloso sabbiosi, SAL = sabbie argilloso limose, SL = sabbie limose, S = sabbie, SR = sabbie oblisioso ΘS = oblisie sabbiose Θ = oblisie S = oblisies S = obline S = oblisies S = o Committente: Comune di Sasso Marconi
Cantiere: sopraelevazione edificio municipale
Località: Piazza dei Martin della Liberazione, 6
Comune: Sasso Marconi (BO)
Data: 11/09/2008
Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 ÷ 16/04/09: -11,63m (14/11/08)
Profondità piezometro da p.c. CPT: -11,70m

	カル	19	7,72	00,0	60200'0	67100,0	i/ətsanəbbs ətnəmsibəm SAL	(V) V	714	25	28	00'0	91200,0	98100,0	31	1,23	88	79	38	01-	8
							Netarente addensate/i	î ŝ	159	67	58	00'0	0,00215		07	70,1	43	99	43	8'6-	9
							SL mediamente addensate/i	10.0	150	97	30	00'0	p1200,0	48100,0	97	78,0	07	99	07	9'6-	1
							SAL mediamente addensate/i	1.0.0	66	200	28	00'0		18100,0	33	00,1	33	09	33	t'6-	- 2
							SAL mediamente addensate/i	·	132		58	00,0	100000000000000000000000000000000000000	0,00185	07	1,13	97	09	97	2,6-	6
							S mediamente addensate/i	r	961	05/20	33	00,0		20100,0	99	00,1	99	84		250,000	
							SAL mediamente addensate/i	10.0	111		30	00,0		18100,0	43	78,0		5870	99	6-	
	155	74	0'67	00.00	0,00214	48100,0	SL mediamente addensate/i	\ \ \ \ \ \ \	981	-	30	00,0		98100,0	77		37	89	7.5	8,8-	-
							LAS mediamente addensate/i	·	66	1000	28	00,0			10000	04.1	29	87	79	9.8-	-
							SL mediamente addensate/i	ľ		-	32	A STATE OF THE PARTY OF THE PAR		68100,0	31	70,1	33	29	33	4.8-	
							SAL mediamente addensate/i	100	126	-	-	00,0	100000000000000000000000000000000000000	98100,0	79	1,27	89	48	89	2,8-	
							SL mediamente addensate/i	- V	1	-	52	(7.858)(7.55)		28100,0	39	70,1	42	29	42	8-	-
							Netsagebbs etgegeibeg 12	× .	174	F1.07	32	00.0		48100,0	89	.00,1	89	1-7	89	8,7-	
								r	901	-	52	00,0		48100,0	07	88,0	32	99	32	9'2-	_
							i\earlie addensate\i	£~~~	× 111	-	72	00'0	CONTRACT CONTRACT	98100,0	72	1,40	38	89	38	p,7-	ue l
							National and a serial s		108	1100000	72	00'0		98100,0	28	15,1	98	99	36	2,7-	
							i\earanaba addensate\i	47.4	801		72	00.0	Section Control of the Control of th	98100,0	72	1,33	98	99	98	<u>L</u> -	-
	76	74	8'97	00 0	41200,0	181000	i/əfsznəbbs əfnəmsibəm SAJ	[v~v	901	-	72	00,0		98100,0	72	1,28	35	97	35	8,9-	Ш
							SAL mediamente addensate/i	kű'nű	1/8	1000	58	00,0		28100,0	07	17.0	28	74	28	9'9-	
							Netaranente addensate/i	นูนทูน	∴ 78 ∴ 78	10000	28	00,0	Contract of the Contract of th	48100,0	32	16,0	58	79	58	7'9-	
					Ļ		i\atsanabbs atnamsibam &AJ	~~~	150		28	00'0		78100,0	30	69,1	09	7.5	99	2,8-	
							SAL mediamente addensate/i	h	17 L	150000	82	00,0	71200,0	TIERO CONTRACTOR ST	33	74,1	67	79	67	9-	
							SL mediamente addensate/i	× ×	144	84	15	00'0		48100,0	84	1,00	84	99	84	8,2-	
	26	7.8	7,82	00.0	96100,0	99100,0	SL mediamente addensate/i	100	150	1000	30	00,0	-0.000000000000000000000000000000000000	38100,0	97	1,12	09	99	09	9'9-	
							S sciolte/i		1/8		32	00,0	88100,0	82100,0	07	0,40	28	98	28	p'G-	
							SL mediamente addensate/i	r	72 🗠	98	58	00'0		18100,0	97	65,0	24	30	24	2,8-	
							i/estiolte/i		97	15	28	00'0	88100,0	82100,0	88	0,40	91	61	15	9-	
	Yε	24	0,75	00'0	47,100,0	94100,0	R SL sciolte/i	NY NY	98	23	82	00'0	38100,0	32100,0	97	72,0	15	81	15	8,4-	
							9R SL sciolte/i	1	79	31	58	00'0	88100,0	82100,0	97	07,0	81	24	81	9'7-	
4. P							R SL sciolte/i	1876 1876	69	15	30	00,0	88100,0	82100,0	88	0,40	23	62	23	b 'b-	
.d.f.							R SL sciolte/i	學學	72	31	31	00'0	88100,0	82100,0	09	0,40	24	32	54	2,4-	
							NS SMC mediamente addensateli		129	98	33	00,0	11200,0	18100,0	18	65,0	43	74	43	ヤ -	
							i\etloips JAS A	逐變	30	23	72	00'0	28100,0	32100,0	38	72,0	10	20	10	8,6-	
							NG mediamente addensate/i		≤ 66€	07	17	00,0	0,00222	26100,0	200	79,0	133	137	133	9,6-	
							Notiois JAS A		_ 72 _	23	72	00,0	38100,0	32100,0	34	72,0	6	カレ	6	p,E-	
							R SAL sciotte/i	校校	⊼ εε	22	72	00'0	78100,0	72100,0	33	66,0	11	14	11	2,8-	
	09	56	2,85	00'0	06100,0	09100,0	R S sciolte/i		45 <	81	18	00'0	68100,0	62100,0	07	02,0	14	28	カレ	£-	
							Nediamente addensate/i		69	14	56	00'0	41200,0	48100,0	52	£6'0	23	07	23	8,2-	Ī
							R SMG mediamente addensate/i		907	09	38	00'0	0,00215	28100,0	611	51,1	135	139	135	9'7-	Ī
							R SL sciolte/i	総総	98	23	28	00'0	38100,0	0,00155	97	72,0	15	91	15	4,2-	Ī
							R SL sciolteli	総総	72	18	82	00'0	68100,0	62100,0	97	02'0	6	15	- 6	2'2-	100
							R SAL sciolte/i	認認	21	18	72	00'0	68100,0	0,00153	35	02,0	7	91	L	2-	-
							Nedisamente addensate/i	認認	97	98	97	00'0	0,00211	18100,0	28	66,0	91	24	٩١	8,1-	
							R S mediamente addensate/i		165	38	35	00'0	0,00212	28100,0	76	09'0	99	69	99	9,1-	
							R LAS sciolte/i		21	23	52	00'0	38100,0	93100,0	56	72,0	L	11	L	p'1-	
	1.7	07	0'57	00'0	701.00'0	20100,0	i\atloios SAJ R	談談	51	23	52	00'0	38100,0	0,00155	97	72,0	L	15	L	2,1-	
	21	56	976	00 0	28100,0	C2100 0	Netiolise SAJ R		27	72	56	00'0	78100,0	78100,0	72	66,0	6	91	6	L-	Ī
							i\etioios SAJ R		68	34	97	00'0	68100,0	62100,0	28	74,0	13	SS	13	8,0-	T
							R SL mediamente addensate/i	医炎炎	138	ヤヤ	35	00'0	0,00192	0,00162	89	08,0	97		97	9'0-	ī
	911	37	28,3	00'0	26100'0	87100,0	Preforo: R sottofondo di sabbia	DXX	7				86100,0	06100,0						p'0-	
	244-02.50V			www.commonw.file			Preforo: R ciottolato cementato	以沒	(0,00228	0,00220						2'0-	
ne								lica										on when it is said.			
Piano di fondazione	k∂\cm _s	0/_	0	калсш_	kā\cm³	калст		Colonna stratigrafica	kā/cm _s	0/_		ка/сш,	kā\cm ₂	kā\cm ₂		เมวเกิง	k∂\cm _s	01 (15)	01/15	ш	
C 10	6	/0	0	6 1 1	Ysat k	Ynat k		0 =	6	/0	n o	c	3	3		Zmolny	Lalom	KONTO	OF/TDX	В	

Committente: Comune di Sasso Marconi Cantiere: sopraelevazione edificio municipale Località: Piazza dei Martiri della Liberazione, 6 Comune: Sasso Marconi (BO)
Data: 11/09/2008

Quota p.c. da 0,00 = piano terra: 0,00m


Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 , 16/04/09: -11,63m (14/11/08) Profondità piezometro da p.c. CPT: -11,70m

LEGENDA

LEGENDA
R = riporto, M = macerie,
T = torbe, AT = argille torbose, A = argille, AL = argille limosa, LA = limi argilloso sabbiosi,
SAL = sabbie argilloso limose, SL = sabbie limose, S = sabbie,

SG = sabbie ghiaiose, GS = ghiaie sabbiose. G = ghiaie. C = ciottoli, B = bloc

Prof. da m	Prof. a m	L1 kgf/10	L2 kgf/10	qc kg/cm²	fs kg/cm²	qc/fs	γ _{nat n} kg/cm ³	γ _{sat n} kg/cm ³	Cu _n kg/cm ²	Φn	Dr _n %	E _n kg/cm	Colonna	Tipo litologico	γ _{nat k} kg/cm ³	γ _{sat k} kg/cm ³	Cu _k kg/cm ²	Φ.	Dr.	E _k kg/cm ²	Piano di fondazione	F
-10	-10,2	44	62	44	1,44	31	0,00165	0,00195	0,00	28	55	132		LAS mediamente addensate/i							2000	
-10,2	-10,4	48	70	48	1,73	28	And the second second	0,00217	0,00	10000	58	144	anani anana	LAS mediamente addensate/i								
-10,4	-10,6	54	80	54	1,87	29		0,00218	0,00	-	60	162		LAS mediamente addensate/i	1							
-10,6	-10,8	64	92	64	2,31	28		0,00219	24001024	-	64	192	7272	LAS mediamente addensate/i	0.00470	0.00000	0.00	57 A				
-10,8	-11	55	90	55	1,84	30	0,00188	0,00218	0,00	28	59	165	<u> </u>	LAS mediamente addensate/i	0,00179	0,00209	0.00	27,4	01	114		
-11	-11,2	46	74	46	1,31	35	0,00186	0,00216	0,00	29	53	138	ద్ద్ద	SAL mediamente addensate/i								
-11,2	-11,4	38	58	38	1,13	34	0,00185	0,00215	0,00	28	50	114	2222	SAL mediamente addensate/i								
-11,4	-11,6	23	40	23	0,80	29	0,00183	0,00213	0,00	27	44	69	27275	LAS mediamente addensate/i								
-11,6	-11,8	350	362	350	2,00	175	0,00198	0,00228	0,00	44	61	1050	00000	GS mediamente addensate/i								Ī
-11,8	-12	600	630	600			0,00224	0,00232	0,00			1800	0000	GS addensate/i	0,00194	0,00211	0,00	38.9	54	920		
-12	-12,2			FF 58				Past 4														
-12,2	-12,4										ALFORD SE											
-12,4	-12,6																					
-12,6	-12,8																					
-12,8	-13																					
-13	-13,2			7712													114					
-13,2	-13,4									П												
-13,4	-13,6																					
-13,6	-13,8																					
-13,8	-14																					
-14	-14,2																	11-18				
-14,2	-14,4																					
-14,4	-14,6				#																	
-14,6	-14,8																					
-14,8	-15				9																	
-15	-15,2									36								2014		01112		
-15,2	-15,4										10000000											
-15,4	-15,6																					
-15,6	-15,8																					
-15,8	-16																					
-16	-16,2																					
-16,2	-16,4							1141.000.000.00														
-16,4	-16,6																					
-16,6	-16,8																					
-16,8	-17																					
-17	-17,2																			- 100		
-17,2	-17,4																					
-17,4	-17,6																					
-17,6	-17,8																					
-17,8	-18																					
-18	-18,2																					
-18,2														A CONTRACTOR OF THE CONTRACTOR								
-18,4	-18,6						- 8				-											
-18,6	-18,8				+																	
-18,8	-19				,																	
	-19,2																			171111		
-19,2	-19,4																					
-19,4	-19,6																					
-19,6	-19,8																					
-19,8	-20																					

Committente: Comune di Sasso Marconi Cantiere: sopraelevazione edificio municipale Località: Piazza dei Martiri della Liberazione, 6 Comune: Sasso Marconi (BO) Data: 11/09/2008

Quota p.c. da 0,00 = piano terra: -0,20m Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 \div 16/04/09: assente Profondità piezometro da p.c. CPT: -8,65m

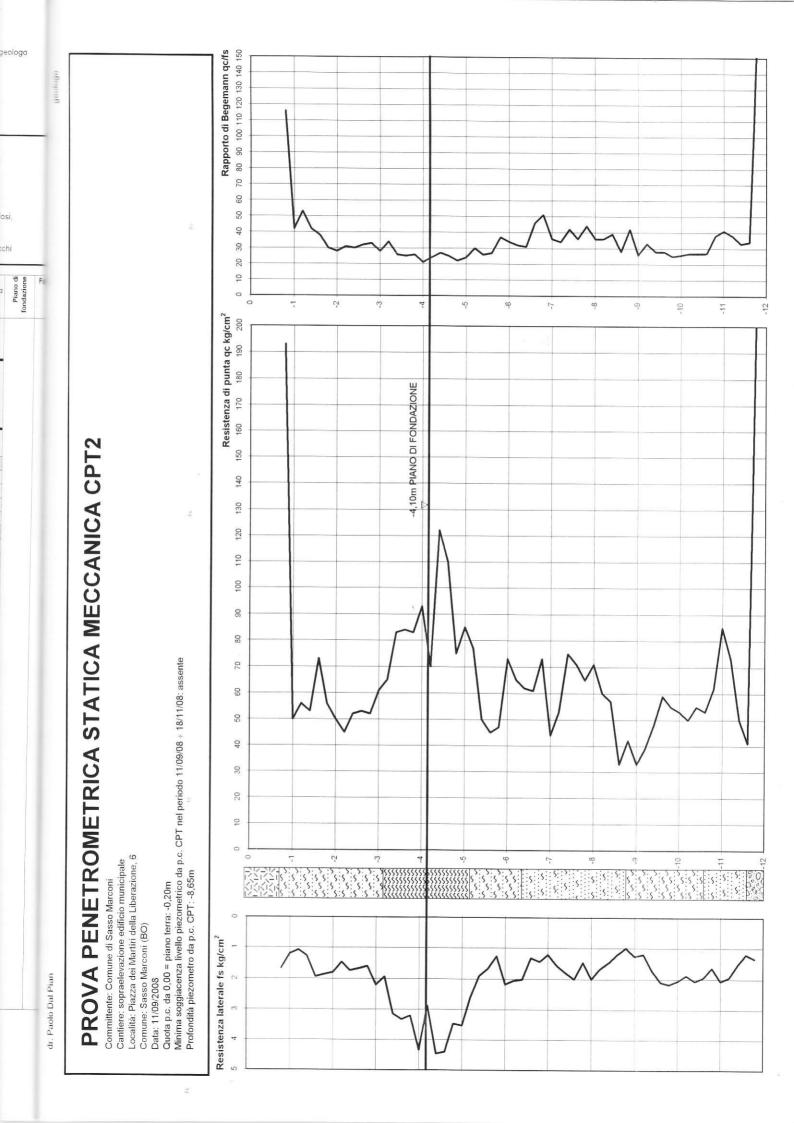
$$\label{eq:local_local_local_local} \begin{split} & \mathsf{LEGENDA} \\ & \mathsf{M} = \mathsf{macerie}, \, \mathsf{R} = \mathsf{riporto} \\ & \mathsf{T} = \mathsf{torbe}, \, \mathsf{AT} = \mathsf{argille} \, \mathsf{torbose}, \, \mathsf{A} = \mathsf{argille}, \, \mathsf{AL} = \mathsf{argille} \, \mathsf{limosa}, \, \mathsf{LA} = \mathsf{limi} \, \mathsf{argillosi}, \\ & \mathsf{LAS} = \mathsf{limi} \, \mathsf{argilloso} \, \mathsf{sabbiosi}, \\ & \mathsf{SAL} = \mathsf{sabbie} \, \mathsf{argilloso} \, \mathsf{limose}, \, \mathsf{SL} = \mathsf{sabbie} \, \mathsf{limose}, \, \, \mathsf{S} = \mathsf{sabbie}, \\ & \mathsf{SG} = \mathsf{sabbie} \, \mathsf{ghialose}, \, \mathsf{GS} = \mathsf{ghiale} \, \mathsf{sabbiose}, \, \, \mathsf{G} = \mathsf{ghiale}, \, \, \mathsf{C} = \mathsf{ciottoli}, \, \mathsf{B} = \mathsf{blocchi} \end{split}$$

Hof.	Prof. a m	L1 kgf/10	L2 kgf/10	qc kg/cm²	fs kg/cm²	qc/fs	γ _{nat n} kg/cm ³	γ _{sat n} kg/cm ³	Cu _n kg/cm²	φn	Dr _n %	E _n kg/cm²	Colonna		Tipo litologico	γ _{nat k} kg/cm ³	γ _{sat k} kg/cm ³	Cu _K kg/cm ²	Фk °	Dr _k %	E _k kg/cm²	Piano di fondazione	Falda
0	-0,2						0,00220	0,00228					深深	71	Preforo: R ciottolato cementato								
-	-0,4				L.V. Stories		0,00190	0,00198		V-12-0	2000000		悠然		Preforo: R sottofondo di sabbia	0.00195	0,00208	0,00	32,6	49	439		
	-0.6						0.00230						念器	1	Preforo: R calcestruzzo	- 0,00133	0,00200	0,00	02,0	70	100		
- 2	-0,8	193		193	1,67	116	0,00187		0,00	39	58	579		3	R SM mediamente addensate/i								
- 3	-1	50	75	50	1,20	42	0.00185		0,00	30	51	150	200	:	SAL mediamente addensate/i								
-	-1,2	56	74	56	1,07	53	0.00185	0,00215	0,00	31	49	168	N. W.	2	SL mediamente addensate/i	1							
1.2	-1.4	53	69	53	1,27	42	0,00186	0,00216	0,00	30	52	159	200	~3	SAL mediamente addensate/i								
-14	-1.6	73	92	73	1,93	38	0,00188	0,00218	0,00	30	60	219	20.27	7.4	SAL mediamente addensate/i								
- 6	-1,8	56	85	56	1,87	30	0,00188	0,00218	0,00	28	60	168	mile)	24	LAS mediamente addensate/i								
= 3	-2	50	78	50	1,80	28	0,00188	0,00218	0,00	27	59	150	200		LAS mediamente addensate/i	0.00186	0,00216	0.00	28.1	55	156		
-2	-2.2	45	72	45	1,47	31	0,00187	0,00217	0,00	28	55	135	40,000	1	LAS mediamente addensate/i] 0,00100	0,00210	0,00	20,,				
.22	-2.4	52	74	52	1,73	30	0,00187	0,00217	0,00	28	58	156	M.W.	,:1	LAS mediamente addensate/i								
34	-2,6	53	79	53	1,67	32	0,00187	0,00217	0,00	28	58	159	,		LAS mediamente addensate/i								
26	-2,8	52	77	52	1,60	33	0,00187	0,00217	0,00	28	57	156		្នា	SAL mediamente addensate/i								
28	-3	61	85	61	2.20	28	0,00189	0,00219	0,00	28	63	183	12,72		LAS mediamente addensate/i								
-3	-3,2	65	98	65	1.93	34	0,00188	0,00218	0,00	29	60	195	~~~	2	SAL mediamente addensate/i								
32	-3,4	83	112	83	3,13	26		0,00221	0,00	28	69	249	888	33	LAS addensate/i								
24	-3.6	84	131	84	3,33	25	0.00191	0,00221	0,00	27	70	252	1888 1888	8	LAS addensate/i								
-16	-3,8	83	133	83	3,20	26	0.00191	0,00221	0,00	28	70	249	888	\$	LAS addensate/i	0,00187	0,00216	0,00	26,7	68	225	_	
18	-4	93	141	93	4,33	21	1	0,00213	2,89	0	0	280	888	8	LA molto consistenti							P.d.f. -4,10m	
4	-4.2		135	70	2,87	24		0,00220		27	68	211	888	\$	LAS addensate/i							₽. 4	
42	-4.4		165	122	4,47	27		0.00223		28	76	366	£888	88	LAS addensate/i			T					
44	-4,6	101/4/23	177	110	4.40	25	0.00193	0.00223	0,00	28	76	330	888	\$	LAS addensate/i								
4.6	-4.8	10000	141	75	3,47	22	0.00203	0,00211	2,31	0	0	226	888	8	LA molto consistenti	0,00188	0,00214	0,00	27,2	68	229		
48	-5		137	85	3,53	24	-	0.00221	0.00	27	72	256	888	Š	LAS addensate/i								
-5	-5,2		130	77	2,59	30		0,00220	0,00	28	66	231	888	3	LAS addensate/i								
5.2	-5.4	_	89	50	1,91	26	_	0,00218	-	27	_	-		· .	LAS mediamente addensate/i								
54	-5,6		74	45	1,67	27		0.00217		27	5000	135	-25	5.5	LAS mediamente addensate/i								
5.6	-5,8		72	47	1,27	37		0,00216	-	29	-	141	77.77	5	SAL mediamente addensate/i	0.004.07	0.0004	7 0.00	27.3	EC	146		
-5.8	-6	020	92	73	2,17	34		0.00219		29	62	219	20.00	 	SAL mediamente addensate/i	0,00187	0,00217	7 0,00	21,0	06	140		
-6	Suppose San		98	65	2,05	32		0,00218		28	61	195	W	<u>ښ</u>	LAS mediamente addensate/i		-						
-62	-6,4	-	93	62	2.01	31		0,00218	-	28	61	186	~~~	٠ د	LAS mediamente addensate/i				St				
-6.4		-	91	61	1,32	46	0.00186	0.00216	0.00	31	53	183	4 4		SL mediamente addensate/i								
-6.6	5.480	1000	93	73	1,44	51	-	0,00216		32	55	219	· · · · ·		SL mediamente addensate/i								
-6.8	-7	220	66	44	1,21	36	05040500000000	0,00215		-	52	0.000		· ·	SAL mediamente addensate/i								
-7	-7.2		71	53	1,56	34		0,0021	CHEMICAL PROPERTY.	28	56	159	†×		SAL mediamente addensate/i								
7.2	-7.4	-	98	75	1,80	42	0.00188	0,00218	3 0,00	30	59	225	7		SAL mediamente addensate/i								
7.4	-		98	71	2,00	36	0.00188	0.00218	3 0,00	29	61	213	7	<u>.</u>	SAL mediamente addensate/i	0.00400	0.0004/	0.00	28,9	50	155		
7.6	2010	-	95	65	1.47	44		0.0021	70,000,000,000	31		195		×	SL mediamente addensate/i	0,00186	0,00216	0,00	20,5	0.0	133		
7.8	100		93	71	2,00	36		0,00218	0,000,000	-	9 61		7	ŕ	SAL mediamente addensate/i	1							1
-8			90	60	1,67	36	CONTRACTOR CONTRACTOR	0,0021	THE STREET STREET	1000	9 58				SAL mediamente addensate/i								
-8.2			82	57	1,47	39	-	0,0021		100	55		٠	<u>٠</u>	SAL mediamente addensate/i								
-8.4	173110		55	33	1,20	28		0,0021	-	_	7 51	-	1	4	LAS mediamente addensate/i								
4.6	-	_	60	42	1,00	42		0,0021		1	0 48				SAL mediamente addensate/i								
-8.8	-	TOWN TO THE REAL PROPERTY.	48	33	1,27	26		0,0021		100	7 52	THE RESERVE		×.	LAS mediamente addensate/i								
-9	1000000		58	39	1,20	33	200000000000000000000000000000000000000	0,0021			8 51	OT STREET, SALES	in in it	, X,	SAL mediamente addensate/i								
-8.2	1	-	66	48	1,73	28		7 0,0021		-	7 58		د گذا	S.	LAS mediamente addensate/i				933 8				
-	0.00	1 1000	-	100,000	70.0000000			0,0021		_	8 62				LAS mediamente addensate/i	0,0018	7 0,0021	7 0,00	26,9	56	132		
-8,4	1000		85	59	2,09			0,0021	-		7 62	-		5	LAS mediamente addensate/i	-							
-9,6	-	+	86	55	2,17	-	-							.5									
-9.8	-10	53	86	53	2,05	26	0,0018	0,0021	8 0,00	12	7 61	1 159			LAS mediamente addensate/i		1						

Committente: Comune di Sasso Marconi Cantiere: sopraelevazione edificio municipale Località: Piazza dei Martiri della Liberazione, 6 Comune: Sasso Marconi (BO) Data: 11/09/2008

Quota p.c. da 0,00 = piano terra: -0,20m Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 , 16/04/09: assente Profondità piezometro da p.c. CPT: -8,65m

LEGENDA


M = macerie.

N = Intacerie,
T = torbe, AT = argille torbose, A = argille, AL = argille limosa. LA = limi argillosi,
LAS = limi argilloso sabbiosi,

SAL = sabbie argilloso limose, SL = sabbie limose, S = sabbie.

SG = sabbie ghiaiose, GS = ghiaie sabbiose, G = ghiaie, C = ciottoli, B = blocchi

Prof.			L2	qc	fs	qc/fs	Ynat n	Ysat n	Cun	φn			nna fica	Tipo litologico	Ynat k	Ysat k	Cu _K	Φk	Drk	E _k	ne di	Falt
da m	a m	kgf/10	kgf/10	kg/cm²	kg/cm ²		kg/cm ³	kg/cm ³	kg/cm ²		%	kg/cm ²	Colonna			kg/cm ³				kg/cm ²	Piano di fondazione	
-10	-10,2	50	81	50	1,88	27	0,00188	0,00218	0,00	27	60	150	~~~	LAS mediamente addensate/i							T.	
-10,2	-10,4	55	83	55	2,07	27	0,00188	0,00218		-	62	165		LAS mediamente addensate/i	0.00187	0,00217	0,00	26,9	56	132		
-10,4	-10,6	53	84	53	1,95	27	0,00188	0,00218	0,00	-	60	159	2727	LAS mediamente addensate/i	1							
-10,6	-10,8	62	91	62	1,64	38	0,00187	0,00217	0,00	-	57	186	u u u	SAL mediamente addensate/i		_		-		-		
-10,8	-11	85	110	85	2,07	41	0,00188	0,00218	0,00		62	255	Y .Y.	SAL mediamente addensate/i	1							
-11	-11,2	73	104	73	1,95	38	0,00188	0,00218	0,00	30	60	219		SAL mediamente addensate/i	0,00186	0,00216	0.00	28.3	54	142		
-11,2	-11,4	50	79	50	1,53	33	0,00187	0,00217	0,00	28	56	150		SAL mediamente addensate/i								
-11,4	-11,6	41	64	41	1,20	34	0,00185	0,00215	0,00	28	51	123		SAL mediamente addensate/i								
-11,6	-11,8	232	250	232	1,33	174	0,00196	0,00226	0,00	42	53	696	0000	GS mediamente addensate/i		200		-				
-11,8	-12	-	470	450			0,00221	0,00229	0,00	42	80	1350	0000	GS addensate/i	0,00192	0,00209	0,00	38,6	48	593		
-12																						
-12,2	-12,4													11 11 11 11 11 11 11 11 11 11 11 11 11								
-12,4	11// 60/01/10																					
-12,6	-12,8																					
-12,8	-13																					
	-13,2	460								0.000												
-13,2																						
	-13,6																					
-13,6 -13,8	-13,8																					
-13,0	-14 -14,2								100000000000000000000000000000000000000													
-14,2																						
-14,4	-14,6																					
-14,6	-14.8																					
-14,8	-15	-									-											
-15	-15,2		elles (c	e and							1104112											
-15,2	-15,4																					
-15,4	-15,6									-	-											
	-15,8									-	-											
-15,8	-16									+	-								-			
-16	-16,2							Supple 1	Wales and		0.45		House							3000000		
-16,2	-16,4										2433									A LONG		
-16,4	-16,6									7								-	-			
-16,6	-16,8				-					1									-			
-16,8	-17																-		-			
-17	-17,2																					
-17,2	-17,4			- 11.000															ing's			
-17,4	-17,6																		-			
-17,6																-						
-17,8	-18																		+			
-18	-18,2																	THE		E E E		
-18,2															T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- 274	Upo House		
-18,4	200																					
-18,6	-																					
-18,8	-																	-				
-19																				877		
-19,2	1000																		1000			
-19,4	-																					
-19,6																						
-19,8	-20							-														

Committente: Comune di Sasso Marconi Cantiere: sopraelevazione edificio municipale calità: Piazza dei Martiri della Liberazione, 6 Comune: Sasso Marconi (BO) Data: 11/09/2008

Quota p.c. da 0,00 = piano terra: -1,20m

Illinima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 + 16/04/09: -8,81m (16/10/08) Profondità piezometro da p.c. CPT: -9.06m

LEGENDA

M = macerie, R = riporto
T = torbe, AT = argille torbose, A = argille, AL = argille limosa, LA = limi argillosi,

LAS = limi argilloso sabbiosi,

SAL = sabbie argilloso limose, SL = sabbie limose, S = sabbie,

SG = sabble ghialose, GS = ghiale sabblose, G = ghiale, C = clottoli, B = blocchi

Prof. a m	L1 kgf/10	L2 kgf/10	qc kg/cm²	fs kg/cm²	qc/fs	γ _{nat n} kg/cm ³	γ _{sat n} kg/cm ³	Cu _n kg/cm²	φn		E _n kg/cm²	Colonna	stratigrafica	Tipo litologico	Ynat k kg/cm ³	γ _{sat k} kg/cm ³	Cu _K kg/cm ²	φ _k °	Dr _k %	E _k kg/cm²	Piano di fondazione	Falda
-0,2						0,00210	0,00218					陰	120	Preforo: R paviment, in asfalt	0,00184	0,00191	0,00	32,0	44	138		
-0,4						0,00190	0,00198							Preforo: R sottofondo		in the same and		_		-		
-0,6						0,00162	0,00192					窽	25	Preforo: R								
-0,8						0,00162	0,00192					汉	윖	Preforo: R								
-1	19		19	0,33	57	0,00157	0,00187	0,00	30	27	57	资	蚣	R SL sciolte/i	0.00156	0.00186	0.00	27.4	25	34		
-1,2	10	15	10	0,27	38	0,00155	0,00185	0,00	27	23	30	经	舩	R SAL sciolte/i	0,00100	0,00100	0,00		AM. 00.			
-1.4	13	17	13	0,40	33	0,00158	0,00188	0,00	27	31	39	竖	影	R SAL sciolte/i								
-1.6	14	20	14	0,33	42	0,00157	0,00187	0,00	28	27	42	念	K	R SAL sciolte/i								
-1.8	23	28	23	0.67	35	0,00182	0.00212	0,00	28	40	69	8	KI	RSAL mediamente addensat	e/i							
-2	23	33	23	0,67	35	0.00182	0,00212	0,00	28	40	69	13	灹	RSAL mediamente addensat	e/i							
-2.2	24	34	24	0,73	33		0,00213	0,00	27	42	72	松	灹	RSAL mediamente addensat	e/i	0.00040	0.00	20.0	10	00		
-2.4	22	33	22	0,67	33		0,00212	0.00	27	100	66	念	愆	RSAL mediamente addensat		0,00212	0,00	26,9	40	63		
-2.6	26	36	26	0,87	30		0,00214	100000000000000000000000000000000000000	-	45	78	捻	愆	RLAS mediamente addensat	e/i							
-2,8	19	32	19	0,67	29	20,000000000000000000000000000000000000	0,00212	0.1750.00	-	40	57	捻	紭	RLAS mediamente addensat	e/i							
_	18	28	18	0,44	41	de la company	0,00188	0,00	-	33	54	烩	紭	RSAL sciolte/i					COLUMN TWO	Maria Cara	f. Om	
-3			23		41	0,00130		0,00	-	37	69	徐	忿	RSAL mediamente addensal	o/i 0.00165	0,00194	0.00	26.5	33	56	P.d.f. -3,10n	
-3,2	_ 23	30		0,56								松	紭	RSAL mediamente addensat	-1	3,00	1 1710230					-
-3,4	22	30	22	0,59	38	0,00181		0,00		38	66	-7	<u> </u>		_	-			-		1	
-3,6	28	37	28	0,97	29	1504-000-00	0,00214	-	-	47	84	1.00		LAS mediamente addensate								
-3,8	27	42	27	0,75	36		0,00213	4500000	-	43	81		. ~	SAL mediamente addensate								
-4	35	46	35	1,15	30	CONTRACTOR AND SEASON	0,00215	100000000000000000000000000000000000000	-	51	105			LAS mediamente addensate	100000							1
4,2	32	49	32	1,02	31	0,00184	0,00214	0,00	-	48	96	1000		LAS mediamente addensate								
4.4	34	49	34	1,17	29	0,00185	0,00215	0,00	27	51	102			LAS mediamente addensate	i							
4.6	34	52	34	1,19	29	0,00185	0,00215	0,00	27	51	102		. ~	LAS mediamente addensate								
4.8	33	51	33	1,21	27	0,00185	0,00215	0,00	27	52	99			LAS mediamente addensate	0,00178	0,00208	0,00	27,2	42	85		
-5	28	46	28	0,63	44	0,00182	0,00212	0,00	29	39	84	1	×	SL mediamente addensate/i								
-5.2	29	39	29	1,20	24	0,00185	0,00215	0,00	26	51	88	~		LAS mediamente addensate	i j							
-5.4	19	37	19	0,33	57	0,00157	0,00187	0,00	30	27	57		. ~	SL sciolte/i			1					
-5,6	108	113	108	1,33	81	0,00186	0,00216	0,00	35	53	324		Ĭ	SG mediamente addensate/								
-5.8	25	45	25	0,63	40	0,00182	0,00212	0,00	29	39	75	~	·	SAL mediamente addensate	'i							
-6	29	38	29	0,68	43	0,00182	0,00212	0,00	29	41	87	٠.	~	SAL mediamente addensate	ri .							
-52	33	43	33	0,67	50	0.00182	0,00212	0.00	30	40	99		×	SL mediamente addensate/i				-				
-6.4	(1) - (1) -	65	55	1,13	49		0,00215		31	50	165		,	SL mediamente addensate/i				12				
-6.6	50000	63	46	1,00	46	400000000000000000000000000000000000000	0,00214	500000	30	-	138	-	<u>.</u>	SL mediamente addensate/i	0,00179	9 0,00208	0,00	29,2	41	116		1
-6.8	100000	40	25	0,67	38	000000000000000000000000000000000000000	0,00212	10000000	28		75	·~	.5	SAL mediamente addensate	ľi							
7	26	36	26	0,87	30	_	0,00214	_	27	-	_	~	~~	LAS mediamente addensate	_			_	_	-	-	
-7.2		35	22	1411/1018 School	30		LICENSES SERVICES		27	10000	and the second second	 	.~.×	LAS mediamente addensate	68477			·				
		-	-	0,73	-		0,00213	4	-	2000			Ù.Y		0001/4-2							
-7.4	1000	34	23	0,73	31	120000000000000000000000000000000000000	0,00213	1010000	27	-	+	- S.	<u>ښ</u>	LAS mediamente addensate								
-7.6		33	22	0,76	29		0,00213		27		20000	- 55		LAS mediamente addensate								
-7.8	72200	37	26	0,92	28		0,00214		27	1000	-	×	:Ľ.	LAS mediamente addensate		0.00044	0.00	20.	10	C.F.		001
-6	100000000000000000000000000000000000000	42	28	1,03	27		0,00215	-	27	S	a Still and the Land	_::ĭ	J.J	LAS mediamente addensate		3 0,00213	3 0,00	26,4	43	65		met
-8,2	23	39	23	0,77	30		0,00213		-	7 43	-	1	~	LAS mediamente addensate								Livello piezometrico
-8.4	17	29	17	0,66	26	0,00182	0,00212	0,00	26	6 40	51	×.	·~.	LAS mediamente addensate	/i) pié
-8.6	20	30	20	0,81	25	0,00183	0,00213	0,00	26	6 44	60	_:	ű.Y	LAS mediamente addensate	/i							/ell
-8.8	23	35	23	0,72	32	0,00183	0,00213	0,00	27	7 42	69	٠٠,٠	3.5	LAS mediamente addensate	/i							5
-9	30	41	30	0,92	33	0,00184	0,00214	0,00	28	8 46	90			SAL mediamente addensate	/i							
-8,2	35	49	35	1,15	31	0,00185	0,00215	0,00	28	8 51	105	~		LAS mediamente addensate	/i						-	
-8.4	50	67	50	1,67	30	0,00187	0,00217	0,00	28	8 58	150		3.5	LAS mediamente addensate	/i							
-8.6	-	70	45	1,28	35		0,00216	1		9 53	100000	- 33	33.7	SAL mediamente addensate	/i 0,0018	5 0,0021	5 0,00	27,0	51	118		
-9.8	3.00	75	56	2,28	25		0,00219			7 63		~	Š	LAS mediamente addensate								
	1000	0.000	6670		1	694.0000000000	0,00216	1775	-	8 53	700000	- 5.	, ~	SAL mediamente addensate								

Committente: Comune di Sasso Marconi Cantiere; sopraelevazione edificio municipale Località: Piazza dei Martiri della Liberazione, 6 Comune: Sasso Marconi (BO)

Data: 11/09/2008

Quota p.c. da 0,00 = piano terra: -1,20m Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 , 16/04/09: -8,81m (16/10/08) Profondità piezometro da p.c. CPT: -9,06m

LEGENDA

R = riporto, M = macerie,

T = torbe, AT = argille torbose, A = argille, AL = argille limosa, LA = limi argillosi,

LAS = limi argilloso sabbiosi,

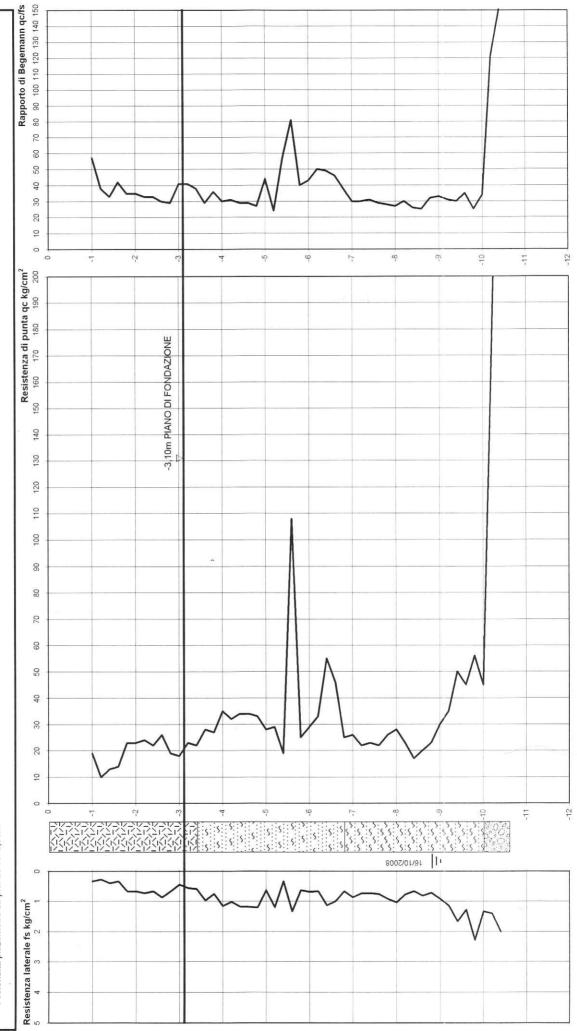
SAL = sabbie argilloso limose, SL = sabbie limose, S = sabbie, SG = sabbie ghiaiose, GS = ghiaie sabbiose, G = ghiaie, C = ciottoli, B = blocchi

Prof. da m	Prof. a m	L1 kgf/10	L2 kgf/10	qc kg/cm²	fs kg/cm²	qc/fs	γ _{nat n} kg/cm ³	γ _{sat n} kg/cm ³			Dr _n	E _n kg/cm ²	Colonna	Tipo litologico	γ _{nat k} kg/cm ³	γ _{sat k} kg/cm ³	Cu _K kg/cm ²	Pk o	Dr _k %	E _k kg/cm²	Piano di fondazione	Faith
-10	-10,2	170	190	170	1,40	121	0,00196	0,00226	0,00	39	54	510	00000	GS mediamente addensate GS mediamente addensate GS addensate					_			
-10,2		302	323	302	2,00	151	0,00198	0,00228	0,00	-	61	906	0000	GS mediamente addensate	0,00192	0,00213	0,00	38,3	54	581		
-10,4	-10,6	500	530	500			0,00222	0,00230	0,00	42	80	1500	0.0903	GS addensate								
-10,6	-10,8																					
-10,8	-11																- FIDE CATEGORY					
-11	-11,2																		N. S.			
-11,2	-11,4																					
-11,4	-11,6																					
-11,6	-11,8																					
-11.8	-12										Í.											
-12	-12,2																					
-12,2	-12,4												1000									
-12,4	-12,6																					
-12,6	-12,8																					
-12,8	-13																					
-13	-13,2						and the state of										100 Auto					
-13,2	-13,4											-creco-shill.com										
-13,4	-13,6																					
-13,6	-13,8																					
-13,8	-14																	-				
-14	-14,2				#							•										
-14,2	-14,4																					
-14,4	-14,6																					
-14,6	-14,8																					
-14,8	-15					- 65																
-15	-15,2																					
-15,2	-15,4								***************************************													
-15,4	-15,6																					
-15,6	-15,8																					
-15,8	-16																					
-16	-16,2																					
-16,2	-16,4													The second secon								
-16,4	-16,6																					
-16,6	-16,8																					
-16,8	-17																					
-17	-17,2																					
-17,2	-17,4																					
-17,4	-17,6																					
-17,6	-17,8																					
-17,8	-18																					
	-18,2																	Ŋ.				
-18,2	-18,4				7																	
	-18,6																					
-18,6																						
-	-19				San																	
	-19,2																		02.00			
-19,2			-																			
-19,4																						
-19,6							7.22															
-19,8																						
					_								1					_		11		

Committente: Comune di Sasso Marconi Cantiere: sopraelevazione edificio municipale

dr. Paolo Dal Plan

Cantiere: sopraelevazione edificio municipale Località: Piazza dei Martiri della Liberazione, 6

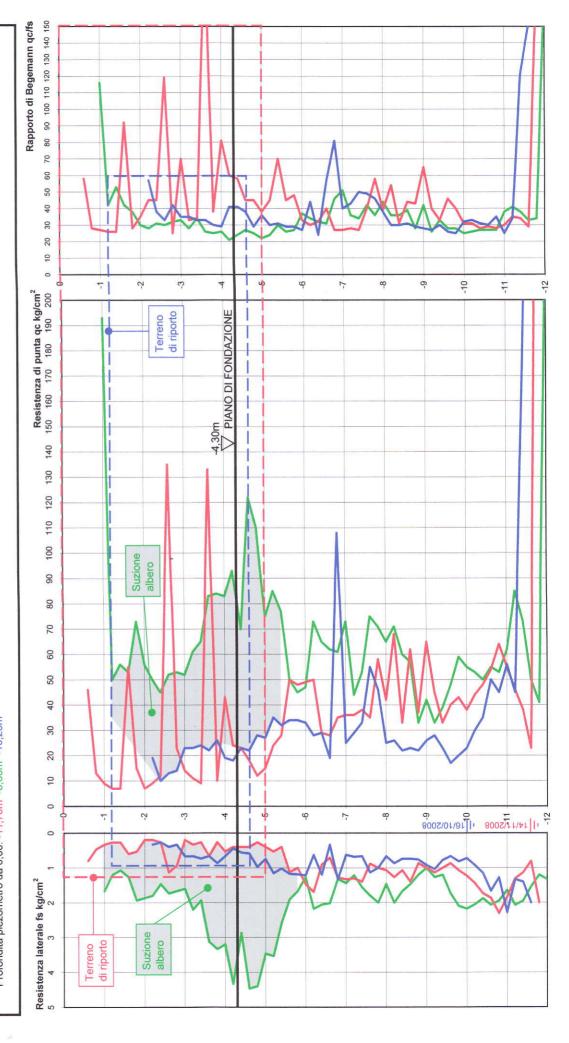

Comune: Sasso Marconi (BO)

Data: 11/09/2008

ata: 11/09/2008

Quota p.c. da 0,00 = piano terra: -1,20m Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 ÷ 18/11/08: -8,81m (16/10/08)

Profondità piezometro da p.c. CPT: -9,06m


COMPARAZIONE CPT 1 - 2 - 3

Committente: Comune di Sasso Marconi Cantiere: sopraelevazione edificio municipale Località: Piazza dei Martiri della Liberazione, 6

Comune: Sasso Marconi (BO)

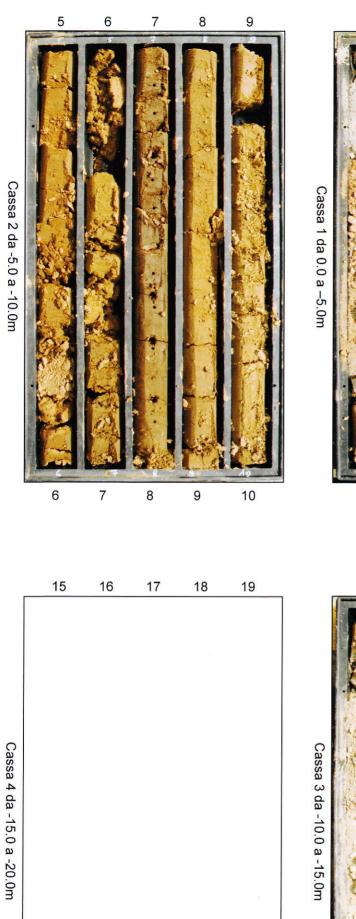
Data: 11/09/2008 Quota 0 dei grafici = quota 0,00m = piano terra Municipio

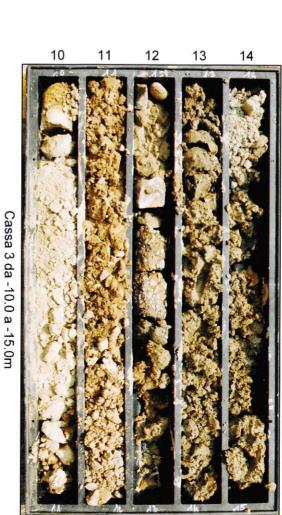
Minima soggiacenza livello piezometrico da p.c. CPT nel periodo 11/09/08 ÷ 16/04/09: -11,63m (14/11/08); assente; -10,01m (16/10/08) Profondità piezometro da 0,00: -11,70m -8,85m -10,23m

LOCA	MITTENTE: ALITÀ : TERE :	Р	iazz		iri de	ella	Libe	rtà, (3 - a		via del Me	rcato – Sa	sso Ma	arconi	PERFORAZ DATA QUOTA	2IONE: S.3 : 18/09/2
Proge	tto:			0000	Cer	tif.; _					Rev.:	Operat.C	laudio Z	anzani	Resp.:geol. F	Paolo Dal Pian Ap
1	fica		Cam	pioni		Carot	aggio	,		Instal	azioni Piezor	metri				
Profondită (m)	Colonna Stratigrafica (AGI)	Tipo	Numero	Profondità (m)	20		60 8	0	Profonditá (m)	Schema	No	ote	R.O.D.			Descriziono
0.8												C Ø40mm, eco.		sabbia	a con macerie	asfalto con s , asciutti.
1.6														Riport	nacerie. o: sabbie fini	limose, di colore
3.4																ie argilloso lim
									.55		fessurato	C ⊘40mm, , rivestito di on tessuto.		Da 5.2	tro, da dotati d	i sciolti a media di umidità natur ie limose, sciolta ie limose, media
6.8																mente sabbiosi, li umidità natura
8.0															argilloso sabb tro, umidi.	piosi, mediame
9.1														media	mente addens	bbiosi, con sati, di colore bri
9.5														bruno	giallastro, dota	mente ghiaiosi, ati di umidità na
9.8		+	+											giallastro	o, dotati di umidità	debolmente ghiaios à naturale. e ghiaiosi, mediam.

		LEGEN	IDA:				7		RII IE	VO LIV	ELLO FA	LDA (H	0)	
		LEGEN	IDA:				_	Do-1 · · ·	Pent	ondità	Ser		Matt	ino
		PG Ca	mpionat	ore a pare	eti grosse			Profondita foro (m)	rive	stim. m)	GG	н.	GG.	Н.
		S Ca	ampionat	ore a pare	eti sottili S	helby								
		O Ca	ampionat	ore a pist	one Oster	berg								
		D Ca	ampionat	ore rotation	o Deniso	n								
		M Ca	ampionat	ore rotativ	vo Mazier									
	Data:	<u> </u>												
		t eter	e (S.I punta con	P.T. ica chiusa	V	ane (M	Pa)	di	Ji gre	ento	o trico		
rafica		Pocket Penetrometer (kg/cm²)	Torvane (kg/cm²)	N ₁ N ₂ N ₃	H (m)	Max.	Res.	Pro- fondità (m)	Metodo di Perforazione	Tipo di Carotiere	Rivestimento	Livello piezometrico	Data	Note
ndo sabbioso,	passante a	7777							A SECCO	=101mm	ON			
otate di umidità i	naturale con								CAROTAGGIO CONTINUO A SECCO	= L = 3m Ø				
o giallastro, dota oni.	te di umidità								AGGIO CO	SEMPLICE L				
					,				CAROT					
limi argilloso sa addensati, di d umidi.	abbiosi, con colore bruno						de ser en la decimina de la companya							
olore bruno, molt	to umide.													
e addensate, di c	colore bruno,													
iamente addens	ati, di colore													
addensati, di c	olore bruno	1877 PRO 187												
	abbondante,													
allastro, umidità amente addens		***************************************												
amente addensati, o		in miles												
ati, bruno giallastri,	umidità naturale.	<u> </u>												

MMITTENTE: COMUNE DI SASSO MARCONI PERFORAZIONE: S.3 : 18/09/2008 : Piazza Martiri della Libertà, 6 - angolo via del Mercato - Sasso Marconi CCALITÀ DATA · Sopraelevazione edificio municipale 131m s.l.m. CANTIERE QUOTA Operat.: Claudio Zanzani Resp.:geol. Paolo Dal Pian Approv.: Certif.: _ Rev.: _ rogetto: Installazioni Piezometri Campioni Carotaggio R.O.D. Profondità (m) Descrizione Stratig Profondità (m) Schema Note 20 40 60 80 Limi sabbiosi, debolmente ghiaiosi, mediam, addens Tubo PVC Ø40mm, Ghiaie debolmente ciottolose, ben fessurato, rivestito di mediamente addensate a molto addens tessuto non tessuto. colore bruno chiaro. Dotata di umidità naturale fino a 11.4m, p (in falda). 2.0 12.25 Ciottoli con ghiaia, arrotondati, in matrice saturi (in falda). 2.6 Sabbie limose, talora limi sabbiosi, molte chiaro, dotati di umidità naturale. Presenti rari cogoli, Ø2÷3cm, arenacei cementati, di colore bruno grigiastro. Rari livelli di: sabbie medie, ben cernite, molto adde sabbie medio-fini limose, muscovitiche grigio con screziature nerastre. 5.0


	LEGEN	D A.				7		RILIE	VO LIVE	ILO FAI	DA (H₂C)	
	LEGEN	DA:			<u> </u>	\dashv	- (- (1))	Pento	ndità	Sera		Mattin	0
	PG Ca	mpionato	ore a pare	i grosse			Profondità foro (m)	rives	stim.	GG	н	GG	н.
9/2008	S Ca	ampionato	ore a pare	ti sottili Sl	relby								
m s.l.m.	O Ca	ampionato	ore a pisto	ne Ostert	erg								
3.111.	D C	ampionate	ore rotativ	o Denison									
	M C	ampionate	ore rotativ	o Mazier									
Approv.: Data:	<u></u>												
sione Stratigrafica	Pocket Penetrometer (kg/cm²)	Torvane (kg/cm²)	S.P punta conid N ₁ N ₂ N ₃	T. ca chiusa H (m)	Va Max.	ne (M Res.	Pro- fondità (m)	Metodo di Perforazione	Tipo di Carotiere	Rivestimento	Livello piezometrico	Data	Note
am. addensati, bruno giallastri, umidità naturale.			143							0			
e, ben assortite, arrotondate, da o addensate, in matrice sabbiosa, di a 11.4m, poi umida. Da 11.55m satura			Rifiuto 50/7.5cm	10.60				CAROTAGGIO CONTINUO A SECCO, 10.8m UTILIZZATA ACQUA A TRATTI	SEMPLICE L = 3m Ø =101mm	ON	11.55m	18/09/08	
in matrice sabbiosa, molto addensati,								AROTAGG 10.8m UTILI	SEN				12.6m
arenacei a grana media, debolmente astro.						II te	erreno caro	tato è m	olto rima	neggiato	a causa		
nolto addensate, di colore bruno; uscovitiche, molto addensate, di colore re.				-		, add	la difficoltà densament mentazione resistenza intenuta co	o e dall'a e. all'avana	assenza zamento	di coesio	ne e di tiere si è	gio.	•
+				15.00									15.0m
			Rifiuto 100/7cm										


Sondaggio S.3

Località: Via Martiri della Libertà, 6 angolo via del Mercato – Sasso Marconi (BO)

geologo

Data: 18/09/2008

COMUNE DI SASSO MARCONI

PROVINCIA DI BOLOGNA

Determinazione della categoria di suolo di fondazione dei terreni costituenti il sito di via Martiri della Libertà, 6

I.G.B. SNC

Via Calzolari 30/A

40128 Bologna

Tel 0516311300

Fax 0516311303

P.I. e C.F.: 0268957120

Dott. Geol. Stefano Maggi

Dott. Geol. Alessandra Borghini

S	OMMARIO	
2	IDENTIFICAZIONE DEL DOCUMENTO	3
3	PREMESSE	4
4	DESCRIZIONE DELLE INDAGINI	5
	4.1 Metodologia MASW ATTIVA (Multichannel Analisys of Surface Waves)	5
	4.1.1 Introduzione generale	5
	4.1.2 Onde superficiali di Rayleigh (onde R)	5
	4.1.3 Tecnica MASW ATTIVA : procedura e strumentazione utilizzata	6
5	ACQUISIZIONE DATI	9
6	RISULTATI	10

2 IDENTIFICAZIONE DEL DOCUMENTO

- ☐ Il presente documento viene identificato con il numero 48.2008 rev. n° 1;
- □ Le indagini ed il lavoro svolto sono stati coordinati dal Dott. Geol. **Stefano Maggi** e dal Dott. Geol. **Alessandra Borghini**;
- □ Il presente documento è stato redatto dal Dott. Geol. Stefano Maggi e dal Dott. Geol. Alessandra Borghini in data 25/09/2008;
- □ Il documento si compone di n° { TC }11 fogli e da n° 12 pagine di allegati.

Redazione del documento

Approvazione del documento

3 PREMESSE

Su incarico del Dott. Geol. Paolo Dal Pian, in data 25/09/2008, è stata effettuata un'indagine geofisica mediante tecnica MASW attiva, nel territorio del comune di Sasso Marconi (BO), in via Martiri della Libertà, 6 angolo via del Mercato. Presso il sito in questione è in progetto la sopraelevazione o ampliamento dell'edificio municipale ivi presente. L'indagine pertanto è stata eseguita al fine di ottenere la classificazione del tipo di suolo sulla base della velocità media equivalente di propagazione delle onde di taglio verticali (Vs) entro i primi 30 m di profondità, in ottemperanza a quanto riportato nel decreto del Ministero delle Infrastrutture, 14 gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni" (pubblicate sulla Gazzetta Ufficiale n. 29 del 4 febbraio 2008, Supplemento ordinario n. 30).

L'acquisizione è stata condotta tramite sismografo a 24 canali modello *DOLANG JEA 24* con scarico dei dati direttamente su p.c. I parametri di campionamento utilizzati nella presente indagine sono riportate in tabella 1.

Modello	Risoluzione	n° canali	n° campioni	Velocità di campionamento	Intervallo di campionamento	Frequenza di campionamento	Unità di alimentazione
JEA 24	24 bit	24	2048	2000 microsec.	4096 ms	500 Hz	24 volt gel battery MOM unit

Tabella 1 - Caratteristiche tecniche della strumentazione utilizzata

4 DESCRIZIONE DELLE INDAGINI

4.1 Metodologia MASW ATTIVA (Multichannel Analisys of Surface Waves)

4.1.1 Introduzione generale

La tecnica MASW venne introdotta per la prima volta nell'ambito della comunità geofisica e geotecnica agli inizi del 1999. La *Multichannel Analisys of Surface Waves* è un metodo sismico mediante il quale è possibile costruire un profilo di velocità delle onde di taglio (*Vs*) in relazione alla profondità (*Vs versus profondità*), attraverso l'analisi delle onde superficiali tipo Rayleigh (onde *R*). Tale tecnica permette quindi di ottemperare a quanto previsto nel decreto del Ministero delle Infrastrutture, 14 gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni", secondo il quale i terreni, su cui devono essere eseguite opere edili di una certa rilevanza, devono essere classificati sulla base del parametro Vs_{30} . La classificazione prevista per i terreni comprende cinque categorie definite da una simbologia alfanumerica da *A* ad *E* e successive integrazioni *S1* e *S2*. A ciascuna di queste categorie corrisponde una valutazione quantitativa della risposta sismica dei terreni sottoposti ad una accelerazione sismica attesa, predefinita per ciascuna classe. Il parametro Vs_{30} rappresenta la media ponderata dei valori di velocità delle onde di taglio

 $V_{s30} = \frac{30}{\displaystyle\sum_{i=1}^{n} \frac{h_i}{v_i}}$ S nei primi 30 metri di sottosuolo indagato e viene espressa matematicamente dalla seguente equazione:

dove V_{S30} : velocità media ponderata delle onde di taglio "S";

hi : spessore dello strato esimo;

Vi : velocità delle onde di taglio "S" nello strato esimo.

4.1.2 Onde superficiali di Rayleigh (onde R)

Esistono diversi tipi di onde superficiali, oltre alle già citate onde di Rayleigh (P+Sv), si conoscono le onde di Love (Sh) e le onde di Lamb. Le onde di Rayleigh rappresentano la componente principale delle onde superficiali e sono generate dall'interazione tra onde di compressione (o di volume) P e onde di taglio verticali Sv ogniqualvolta si è in presenza di una superficie libera in un mezzo omogeneo ed isotropo. Le onde R si propagano alla superficie libera (vedi Fig. 1) con un moto ellittico retrogrado (moto antiorario) che si inverte alla profondità di $\lambda/2\pi$ (dove λ è la lunghezza d'onda). L'ampiezza di tale spostamento decresce secondo una legge esponenziale, pertanto diviene rapidamente trascurabile con la profondità.

L'utilizzo delle onde superficiali di tipo Rayleigh per la costruzione di un profilo di velocità delle onde di taglio Vs è giustificato da una serie di fattori:

La percentuale di energia convertita in onde R è nettamente predominante (67%) rispetto a quella coinvolta nella generazione di onde P (7%) e onde S (26%);

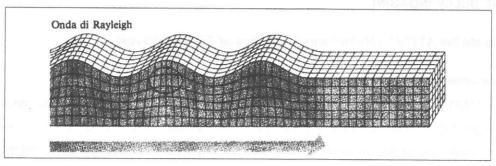


Figura 1 - Modalità di propagazione delle onde R

- □ il metodo d'analisi basato sulle onde *R* non è limitato, al contrario del metodo basato sulla rifrazione, dalla presenza di inversioni di velocità in profondità;
- □ buona risoluzione, a differenza della tecnica a riflessione;
- □ la propagazione delle onde di *Rayleigh*, anche se influenzata dalla *Vp* (velocità delle onde di compressione *P*) e dalla densità del mezzo, è funzione innanzitutto della *Vs* che rappresenta appunto il parametro fondamentale per la caratterizzazione geotecnica di un sito;
- □ la tecnica in questione è inoltre particolarmente indicata per suoli altamente attenuanti ed ambienti rumorosi.

Tenuto conto dei fattori sopraelencati, l'elemento fondamentale che permette l'impiego di tecniche basate sulle onde superficiali, in questo caso la tecnica *MASW* e le onde *Rayleigh*, è una caratteristica chiamata *dispersione*. La dispersione è una proprietà delle onde superficiali che consiste nella deformazione di un treno d'onde dovuta alla variazione di velocità di propagazione al variare della frequenza. Per le onde *R* questa variazione si manifesta solo all'interno di un mezzo stratificato. In altre parole, ipotizzando una variazione di densità del terreno in senso verticale, ciascuna componente di frequenza dell'onda superficiale si propaga con una differente velocità (velocità di fase), e quindi con una diversa lunghezza d'onda; questa proprietà si chiama appunto dispersione.

La velocità di propagazione per una certa lunghezza d'onda λ (e quindi per una certa frequenza ν) è influenzata dalle proprietà che il mezzo possiede fino ad una profondità di λ /2 (anche se recenti studi hanno posto questo limite a λ /2.5). Inoltre, la velocità delle onde R (Vr) è pari a circa il 90% della velocità delle onde di taglio (Vs).

Secondo quanto detto appare chiaro come la costruzione di un profilo verticale di velocità delle onde di taglio Vs, ottenuto dall'analisi delle onde piane della modalità fondamentale delle onde di Rayleigh, sia una delle pratiche più comuni per utilizzare le proprietà dispersive delle onde superficiali.

4.1.3 Tecnica MASW ATTIVA: procedura e strumentazione utilizzata

La procedura MASW si può sintetizzare in tre stadi successivi e distinti:

□ acquisizione delle onde superficiali (ground roll);

- □ costruzione della curva di dispersione : grafico velocità di fase Vr frequenza v,
- inversione della curva di dispersione per ottenere il profilo verticale della Vs (si veda fig. 5 nel rapporto in allegato).

La prima fase viene effettuata direttamente in campagna generando un treno di onde superficiali mediante l'utilizzo di una sorgente sismica attiva, quale generalmente una mazza battente, e uno stendimento lineare di geofoni ricevitori (vedi Fig. 2). L'indagine svolta nel presente lavoro è stata condotta utilizzando la strumentazione DOLANG JEA 24 descritta nelle premesse.

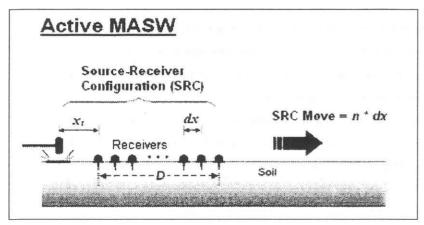


Figura 2 - MASW ATTIVA: stendimento lineare e sorgente attiva

I dati così acquisiti in campagna vengono quindi elaborati utilizzando il software in nostra dotazione "MASW by Vitantonio Roma". In particolare mediante il software si procede alla lettura dei dati acquisiti (common-shot gather) e al calcolo dello spettro nel dominio frequenza – numero d'onda (spettro f-k). Quindi, dallo spettro f-k è possibile estrarre la curva di dispersione apparente sperimentale (si veda fig. 2 nel rapporto in allegato) mediante una doppia trasformata di Fourier applicata al campo di moto misurato nel dominio spazio - tempo. Sulla curva di dispersione sperimentale viene effettuato il cosiddetto Picking (si veda fig. 3 nel rapporto in allegato), cioè la selezione dei punti che, nell'interpretazione dell'utente, appartengono ad un certo modo di propagazione dell'onda superficiale di Rayleigh. L'identificazione ed il Picking della curva di dispersione sono un'operazione di importanza cruciale. I punti sperimentali ottenuti mediante l'operazione di Picking effettuata a partire dalla curva di dispersione apparente sperimentale, devono coincidere il più possibile con le curve teoriche numeriche descritte di seguito.

La curva di dispersione apparente numerica (si veda fig. 4 nel rapporto in allegato) si ottiene in maniera identica alla procedura usata per ottenere la curva di dispersione sperimentale, con l'unica diversità che riguarda la maniera in cui si calcola lo spettro del campo di moto. Mentre nella procedura sperimentale si applica una doppia trasformata di Fourier nella procedura numerica si applica una sola trasformata di Fourier. La curva di dispersione effettiva (si veda fig. 4 nel rapporto in allegato) si ottiene con un metodo alternativo proposto da Lai e Rix (Lai, 1998).

Commessa IGB n° 048 - 07 Pagina 7 di 11

L'ultimo passo da affrontare è l'inversione della curva di dispersione precedentemente costruita. Questa operazione viene effettuata grazie all'utilizzo di una potente tecnica di ottimizzazione basata su algoritmi genetici. Il risultato finale è quello di ottenere il profilo verticale della velocità delle onde di taglio Vs.

Il grado di incertezza del profilo di V_S finale dipende dai seguenti fattori:

- incertezza associata alle misure sperimentali: è rappresentata dall'intervallo di variazione della velocità di fase apparente sperimentale ad una determinata frequenza. Tale range di variazione viene assegnato a ciascun punto sperimentale nella fase di Picking (fig. 3 nel rapporto in allegato);
- propagazione dell'incertezza nel modello di simulazione numerica;
- □ errore relativo o distanza tra curve di dispersione sperimentale e numeriche teoriche (apparente/effettiva). L'errore relativo è un indicatore oggettivo della sovrapposizione tra curva di dispersione sperimentale e teorica numerica.

Generalmente un errore relativo tra curva sperimentale e teorica inferiore al 10% indica il raggiungimento di un buon risultato con un profilo di V_S valido da un punto di vista progettuale. A parità di errore relativo l'utente può scegliere il profilo di V_S sulla base della migliore sovrapposizione visiva tra le curve sperimentale e teorica.

L'elaborazione dei dati acquisiti nel sito in questione è riportata in dettaglio nel rapporto d'indagine allegato alla presente relazione.

5 ACQUISIZIONE DATI

L'indagini geofisica condotta nel presente lavoro è stata effettuata mediante l'esecuzione di n° 1 stendimento sismico (profilo) la cui ubicazione è riportata nella tavola grafica in allegato. Per acquisire i dati è stata utilizzata la tecnica **MASW** descritta al paragrafo **4.1**, impiegando la strumentazione *Dolang JEA 24* descritta precedentemente.

Nella sottostante tabella vengono riportate sinteticamente le caratteristiche tecniche del profilo sismico effettuato:

Identificazione	Lunghezza (m)	Passo intergeofonico (m)	Orientazione	N° Geofoni (verticali)	Dist. Punto di scoppio-1° geofono	Passo campionamento (ms)
Profilo 1	36	1.5	N-S	24	1.5	2

Pagina 9 di 11

6 RISULTATI

L'indagine geofisica effettuata in data 24.09.2008, con la tecnica MASW attiva, ha consentito di ricostruire il quadro sismico del sottosuolo dell'area indagata fino alla massima profondità d'indagine raggiunta. L'analisi del modello sismico ottenuto evidenzia la presenza di 6 sismostrati più il semispazio infinito. Nella sottostante tabella sono riportate le profondità e ed i valori di Vs dei sismostrati individuati (si veda fig. 5 nel rapporto in allegato).

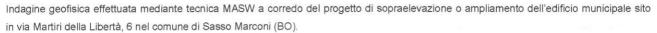
Sismostrato	Profondità (m)	Vs (m/s)
1	0.00 - 3.00	319.37
2	3.00 - 7.50	301.86
3	7.50 – 9.50	353.25
4	9.50 - 13.50	558.99
5	13.50 – 22.50	669.36
6	22.50 - 35.50	701.23
7 (semispazio infinito)	35.50 – 00	766.33

Sulla base di quanto riportato in tabella, la media ponderata dei valori di velocità delle onde $S(V_{s30})$, nei primi 30 m di profondità dal piano campagna, risultata pari a **489 m/s**, colloca il sottosuolo in classe **B**.

Considerando invece la media ponderata dei valori di velocità delle onde S (V_{s30}), nei primi 30 m di profondità a partire dal piano di fondazione (- 5.00 da p.c. attuale) dell'edificio oggetto d'intervento, essa risulta pari a 573 m/s, e colloca il sottosuolo ancora in classe B.

Il valore di $V_{\rm S30}$ comunque ottenuto è da riferirsi alla verticale di terreno posta in corrispondenza del punto mediano dell'allineamento sismico effettuato.

In allegato è presentato il rapporto dettagliato dell'indagine effettuata.



ALLEGATI

- □ Rapporto indagine geofisica eseguita (n° 11)
- □ Tavola con ubicazione indagine (n° 1)

Rapporto indagine geofisica eseguita mediante tecnica MASW

Autore: I.G.B. SNC

Commessa: 48-2008

Committente: Dott. Geol. PAOLO DAL PIAN

Sito: Via Martiri della Libertà - Sasso Marconi (BO)

Data: 25/09/2008

Software: Generated by MASW (c) Vitantonio Roma. All rights reserved.

I.G.B. SNC Via Calzolari 30/a 40129 Bologna, P.I. e C.F.: 0268957120, tel. 051/6311300, Fax 051/6311303

scheme Georgebe

Indagine geofisica effettuata mediante tecnica MASW a corredo del progetto di sopraelevazione o ampliamento dell'edificio municipale sito in via Martiri della Libertà, 6 nel comune di Sasso Marconi (BO).

1 – Dati Sperimentali

Numero di ricevitori	24
Numero di campioni temporali	
Timestep di acquisizione	2 ms
Numero di ricevitori utilizzati per l'analisi	24
L'intervallo di tempo considerato per l'analisi inizia a	0 ms
L'intervallo di tempo considerato per l'analisi termina a	4094 ms
I ricevitori non sono invertiti (l'ultimo ricevitore è l'ultimo per l'analisi))

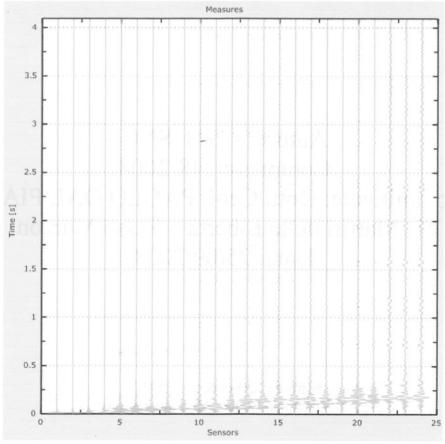
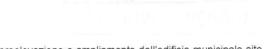



Figura 1: Tracce sperimentali

2 - Risultati dell'analisi

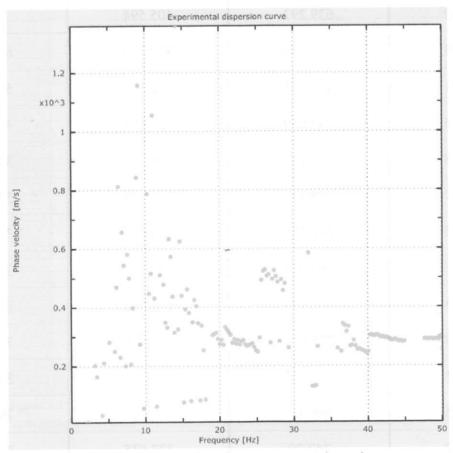


Figure 2: Curva di dispersione apparente sperimentale

3 – Curva di dispersione

Tabella 1: Picking della curva di dispersione sperimentale (valori numerici riportati graficamente in fig. 3)

Freq. [Hz]	V. fase [m/s]	V. fase min [m/s]	V. fase Max [m/s]
7.52282	639.297	405.594	873
10.8195	523.759	379.335	668.182
13.2371	471.241	342.573	599.909
15.8745	389.839	334.696	444.982
17.6328	345.199	316.314	374.084
20.4899	308.437	266.423	350.451
22.9075	282.178	250.667	313.689
25.435	269.049	240.164	297.933
28.6218	263.797	234.912	292.682
32.6878	271.674	242.79	300.559
36.4241	342.573	324.192	360.954
37.9625	269.049	245.416	292.682
39.7208	242.79	227.035	258.545
40.5999	305.811	292.682	318.94
42.6878	290.056	276.926	303.185
44.7758	279.552	266.423	292.682
47.3032	287.43	271.674	303.185

49.5011	287.43	271.674	303.185
7.00 0.00 2 20.00			

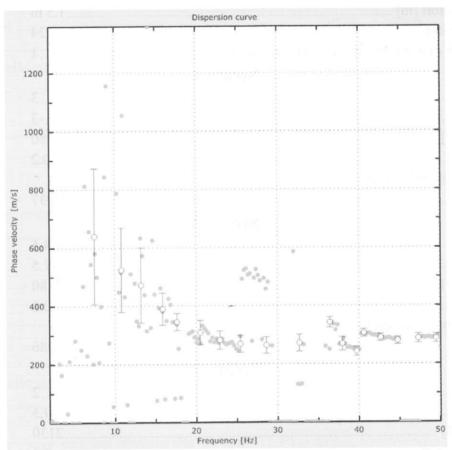


Figura 3: Picking della curva di dispersione sperimentale (rappresentazione grafica). A ciascun punto sperimentale in verde è assegnato un range di variazione della velocità di fase

4 - Profilo del terreno

Numero di strati (escluso semispazio)	7
Spaziatura ricevitori [m]	1.5 m
Numero di ricevitori	24
Numero di modi di Rayleigh (modo fondame	ntale)1
	Strato 1
h [m]	3
z [m]	3
Densità [kg/m^3]	1580
Poisson	0.2
Falda non presente nello strato	
Vs fin.[m/s]	319.37
	Strato 2
h [m]	4.5
z [m]	7.5
Densità [kg/m^3]	2180
Poisson	
Falda non presente nello strato	
Vs fin.[m/s]	301.86
	Strato 3
h [m]	2
z [m]	
Densità [kg/m^3]	
Poisson	
Falda non presente nello strato	
Vs fin.[m/s]	353.25
	Strato 4
h [m]	4
z [m]	13.5
Densità [kg/m^3]	2160
Poisson	
Falda presente nello strato	
Vs fin.[m/s]	558.99

	Strato 5
h [m]	9
z [m]	22.5
Densità [kg/m^3]	
Poisson	
Falda presente nello strato	
Vs fin.[m/s]	669.36
	Strato 6
h [m]	
z [m]	
Densità [kg/m^3]	2200
Poisson	
Falda presente nello strato	
Vs fin.[m/s]	701.23
	Strato 7
h [m]	0
z [m]	00
Densità [kg/m^3]	2200
Poisson	0.48
Falda presente nello strato	
Vs fin.[m/s]	766.33

Il livello piezometrico è risultato attestato alla quota di -11.50 m da p.c. attuale come da misura effettuata in data 18/09/2008. Tale rilievo è stato eseguito nel foro di sondaggio attrezzato con piezometro situato nelle immediate vicinanze del profilo sismico.

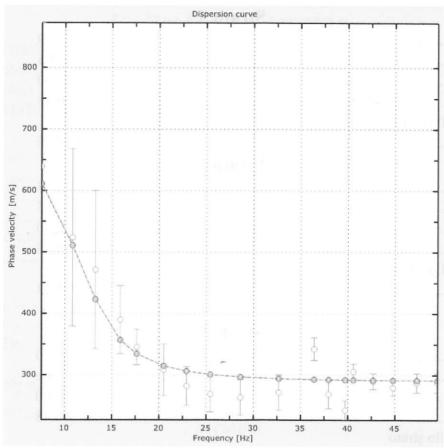


Figura 4: Velocità numeriche – punti sperimentali (Picking - verde), modo fondamentale di Rayleigh (linea azzurra), curva teorica numerica effettiva (linea rossa), curva teorica numerica apparente (linea blu).

Errore relativo tra curva sperimentale e teorica numerica (apparente ed effettiva) è risultato pari a: 8%.

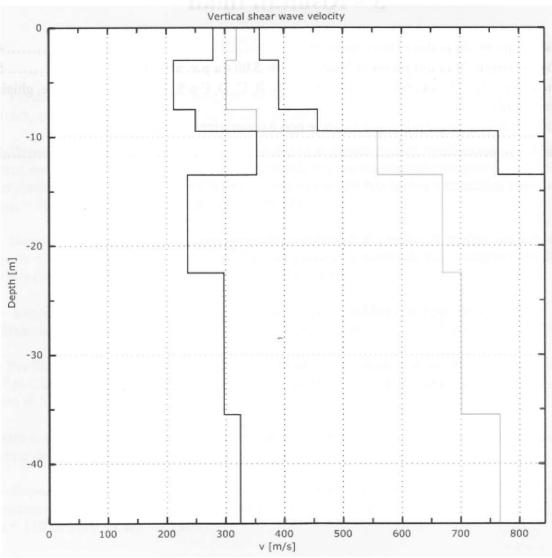


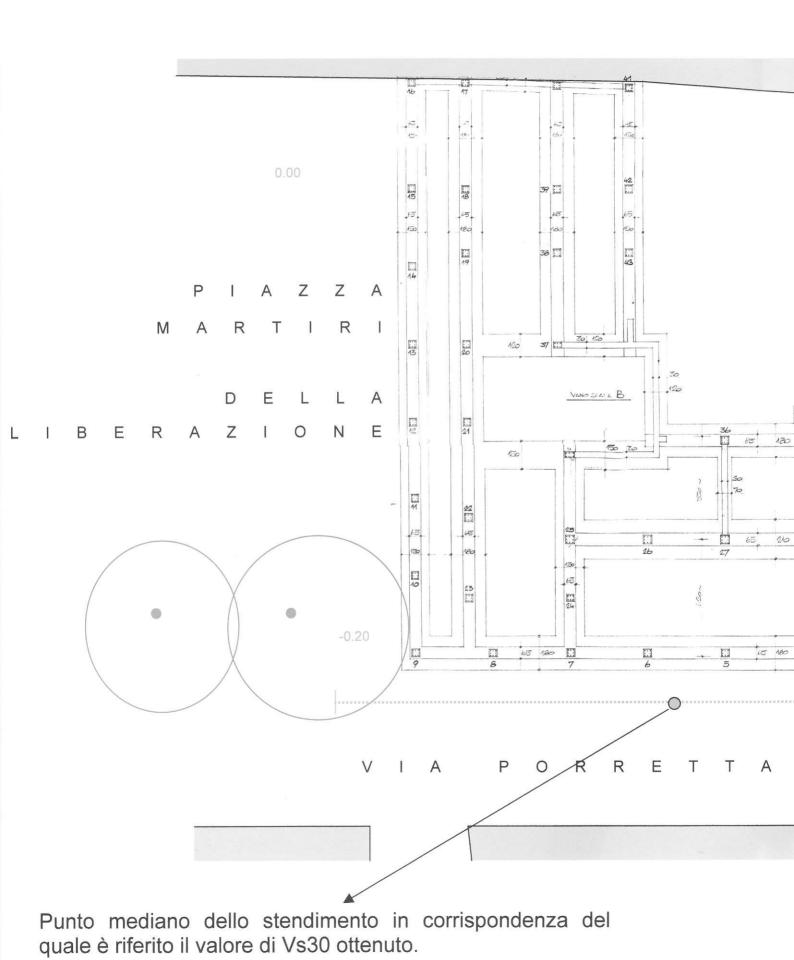
Figura 5: Profilo verticale delle Vs riferito al punto mediano dell'allineamento sismico

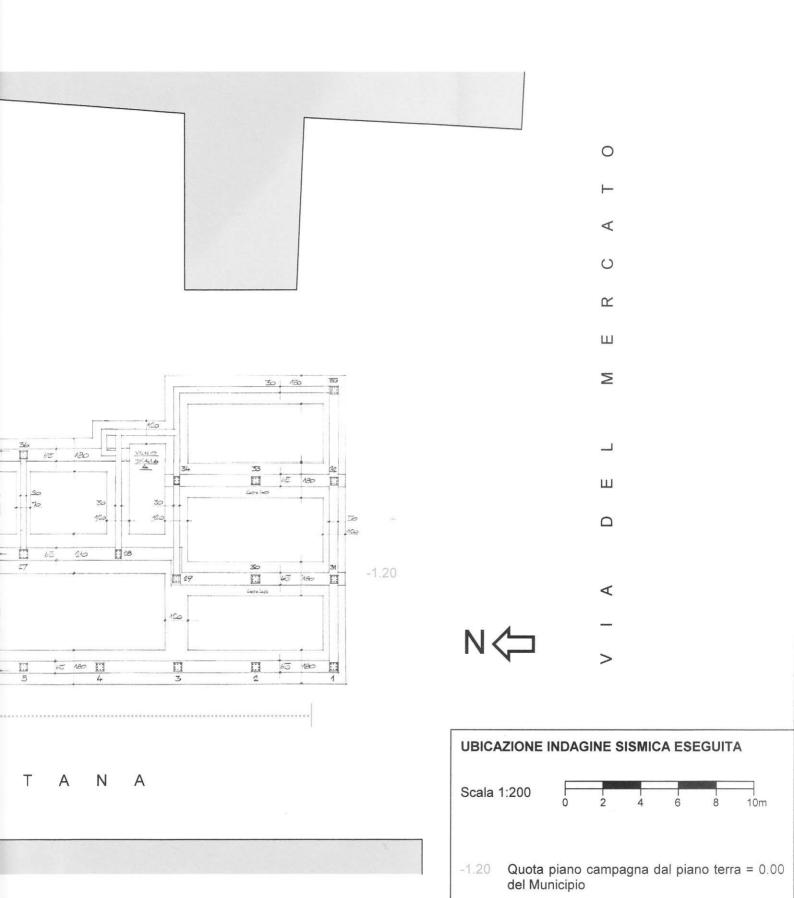
801

Indagine geofisica effettuata mediante tecnica MASW a corredo del progetto di sopraelevazione o ampliamento dell'edificio municipale sito in via Martiri della Libertà, 6 nel comune di Sasso Marconi (BO).

5 – Risultati finali

Vs30 [m/s] nei primi 30 m dal piano campagna	489
Vs30 [m/s] nei primi 30 m dal piano di fondazione (- 5.00 da p.c. attuale)	573
Questo sito è classificabile secondo una delle classi A, B, C, D, E o S1 (terreno alluvionale, sabbia, limo, argilla, roccia).	ghiaia,
Questo sito non è suscettibile alla liquefazione e non è caratterizzato da argille sensitive.	
Categoria di suolo	В




Appendice Categorie di suolo

- A Formazioni litoidi o suoli omogenei molto rigidi caratterizzati da valori di V_{S30} superiori a 800 m/s, comprendenti eventuali strati di alterazione superficiali di spessore massimo pari a 5 m.
- B Depositi di sabbie e ghiaie molto addensate o argille molto consistenti, con spessori di diverse decine di metri, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{\rm S30}$ compresi tra 360 m/s e 800 m/s (ovvero resistenza penetrometrica $N_{\rm SPT30} > 50$, o coesione non drenata $Cu_{30} > 250$ kPa).
- C Depositi di sabbie e ghiaie mediamente consistenti o argille di media consistenza, con spessori di diverse decine di metri, con spessori variabili e valori di $V_{\rm S30}$ compresi tra 180 m/s e 360 m/s (ovvero 15 < $N_{\rm SPT30}$ > 50, o 70 < Cu_{30} > 250 kPa).
- D Depositi di terreni granulari da sciolti a poco addensati oppure coesivi da poco a mediamente consistenti con valori di $V_{\rm S30}$ < 180 m/s (ovvero $N_{\rm SPT30}$ < 15, o Cu_{30} < 70 kPa).
- E Profili di terreno costituiti d strati superficiali alluvionali, con valori di $V_{\rm S30}$ simili a quelli dei tipi C e D e spessore compreso tra i 5 e 20 m, giacenti su di un substrato di materiale rigido con valore di $V_{\rm S30}$ > 800 m/s.

Oltre a queste categorie se ne definiscono altre 2, per le quali sono richiesti studi speciali per la definizione dell'azione sismica da considerare.

- S1 Depositi costituiti da, o che includono, uno strato spesso almeno 10 m di argille e limi di bassa consistenza, con elevato indice di plasticità (PI>40) e contenuto d'acqua, caratterizzati da valori di $V_{S30} < 110$ m/s ($10 < Cu_{30} < 20$ kPa).
- S2 Depositi di terreno soggetti a liquefazione, argille sensitive, o qualsiasi altra categoria non classificabile nei tipi precedenti.

Traccia sezione geofisica MASW